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Resumo:

O render baseado en puntos ten m�ultiples vantaxes respectodo cl�asico que utiliza mallas

de pol��gonos, sobre todo no caso no que os pol��gonos poidanchegar a ser m�ais pequenos

ca un pixel.

O obxectivo deste proxecto �e dese~nar e implementar un motor de render baseado en puntos

que utilice raytracing como m�etodo de iluminaci�on global . Ao ser un campo todav��a pouco

explorado, o proxecto presenta unha importante compo~nente investigadora, xa que implica

a b�usqueda de soluci�ons que nos permitan resolver os distintos problemas que xurden nas

diferentes fases dunpipeline gr�a�co para o render de puntos. Tres son as principais metas

que se propuxeron acadar con este proxecto:

� Desenvolver un motor deray tracing desde cero.

� Investigar como as t�ecnicas de iluminaci�on global m�ais habituais poden ser aplicadas

en render baseado en puntos.

� Comprobar o potencial do punto como primitiva gr�a�ca dun mo tor de render.

O motor proposto segue un dese~no totalmente modular, con varias etapas que permiten

desacoplar as distintas operaci�ons a realizar para obter orender dunha escena 3D. As��,

primeiro precisaremos gardar a informaci�on que o motor necesita para renderizar unha

escea (cousas coma a posici�on da c�amara, orientaci�on, etc.). Para iso util��zase un arquivo

de con�guraci�on XML que cont�en todos estos datos, as�� como calquera outra informaci�on

relevante para o proceso de render.

Seguidamente prec��sase gardar os datos da nube de puntos. Para iso �e necesario saber a

posici�on, vector normal, etc. de cada punto, para o que utilizamos un arquivo de texto

ASCII que cont�en toda a informaci�on da escena de entrada e que ademais soporta control

de versi�ons, permitindo cambios no formato. Tam�en ofreceremos unha interfaz integrada

en Blender que permite ao usuario crear datasets en Blender erenderizarlos co noso motor.

Isto dota �o proxecto dunha gran exibilidade, xa que �e capaz de renderizar datasets ou

calquer escea en Blender.

Despois deste paso, prec��sase elexir o modelo de c�amara a usar. No noso motor imple-

mentamos d�uas opci�ons diferentes. As��, �e posible elexir entre unha c�amara axonom�etrica

ou en perspectiva (dependendo do modo de render elexido). Por outra banda, tam�en �e

posible elexir entre obter o render mediante a proxecci�on da escena na c�amara ou ben

usando raytracing. A��nda que o motor implementa ambas alternativas, concentrar�emonos

no raytracing, posto que �e a opci�on que m�ais posibilidades e prestaci�ons ofrece, sendo o

caso a estudar no proxecto.
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�E importante rese~nar que debido �a natureza das nubes de puntos, que tenden a ter unha

gran cantidade de datos, para a aceleraci�on do proceso de raytracing o motor permite

utilizar unha estrutura de aceleraci�on espacial que permita organizar as nubes de puntos

para optimizar determinadas operaci�ons cos mesmos (intersecci�on raio-escena, b�usqueda de

veci~nos, etc.). Concretamente, neste proxecto implementouse un k-d tree como estrutura

de aceleraci�on. O uso do k-d tree permite obter unha importante mellora no rendemento

do noso motor.

Respecto ao tradicional render baseado en pol��gonos, o render con puntos presenta al-

gunhas desvantaxes, como por exemplo a natureza adimensional dos mesmos. Isto quere

dicir que o punto non ten super�cie, volumen ou normal, o que introduce novos problemas

en moitas das operaci�ons com�uns dun motor de render: intersecci�ons, iluminaci�on, etc.

Concretamente, no caso do c�alculo da iluminaci�on �e imprescindible dispor dos vectores

normais �as distintas super�cies da escena, neste caso representadas por puntos. Se non se

disp�on destas normais, �e necesario estimalas dalg�un xeito. Para resolver este problema o

proxecto utiliza un m�etodo de m��nimos cadrados que se usa para estimar a normal nun

punto dependendo de donde est�en os seus veci~nos.

A derradeira etapa do noso motor, pero non menos importante de acordo aos obxectivos

do proxecto, �e a iluminaci�on da escena. O motor ofrece d�uas opci�ons. Por un lado

p�odese utilizar un m�etodo de hard shadows, menos custoso computacionalmente pero con

resultados pouco realistas. Por outra banda, o motor implementa o m�etodo de Monte

Carlo, modelo de iluminaci�on global que trata de simular o comportamento real da luz nun

contorno, ofrecendo resultados m�ais realistas, a��nda que signi�cativamente m�ais custosos.

Posto que o motor fai un importante uso de distintas operaci�ons e funci�ons matem�aticas

ao longo de todas as s�uas fases, o proxecto tam�en incorporaunha librer��a matem�atica que

se encarga destas tarefas.



Abstract:

The objective of this project is designing and implementinga point-based rendering engine

that utilizes ray tracing for global illumination computat ion.

Point-based rendering has several advantages compared to the more classic polygon-based

rendering that uses polygon meshes, specially when polygons can be smaller than a pixel.

In this project we explore how to represent point models without ray tracing techniques

(with a projective camera) and using ray tracing that is the t rue focus of this project.

It is also important to mention that because of the nature of point clouds, datasets tend

to be really large. That is why a k-d tree is used to acceleratethe ray tracing process. A

k-d tree is a space partitioning structure for data organization (in our case, point data).

This acceleration structure reduces greatly rendering times, and without it the rendering

process would take too long and be too computationally expensive.

Point-based rendering also has some disadvantages, like for example the zero-dimensional

nature of points. This means that a point has no surface, volume or normal vector. This

results in problems in the rendering process. In this project we explore several solutions

for these problems.

To facilitate the usage of the project to the end user, and to also make testing easier; a

plugin compatible with Blender will be programmed. It allow s the rendering of scenes

created in Blender with our project and facilitates the use of the engine thanks to the

integration with the interface of Blender.
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Chapter 1

Introduction

Computer Graphics are graphics that are created using a computer. Advances in computer

graphics have had an impact on several media types such as forexample, the movies and

video games industry.

Images are normally captured by optical devices; such as cameras, mirrors, lenses, etc.

Rendering is the process of generating an image from a model,the scene, by means of

a computer. A scene contains information like geometry, lighting, etc. about a virtual

scene.

Typically, polygonal modeling has been the approach followed for modeling objects in the

scene, approximating their surfaces using polygons. Point-based graphics focuses on points

as the fundamental representation of the surfaces instead of polygons (see Figure 1.1).

Figure 1.1: From left to right; mathematical representation of a plane, representation
using two polygons (triangles) and a point-based representation.

1
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Once a represenation of the object is stored in a model, a lighting simulation algorithm is

required to illuminate the scene. Global Illumination is a group of algorithms that were

created to add more realistic lighting to 3D scenes and take into account not only the light

that reaches an object directly, but also the light that is reected on other surfaces and

reaches the object indirectly. The objective is to achieve aphysically-based simulation of

light transport in the scene.

Computing global illumination means to solve an integral equation, so some of the main

global illumination approaches are based on Monte Carlo integration, a method that is

often used in simulations of physical and mathematical systems. It performs a numerical

integration using random numbers relying on repeated random sampling to obtain a result.

Usually ray tracing is used hand in hand with Monte Carlo integration, because it can be

used to simulate how rays of light move through the scene.

All of these concepts will be explained more in depth in theircorresponding chapters.

1.1 BDE: a point-based global illumination rendering en-

gine

BDE stands for Black Diamond Engine , this is the name that we have given to our

point-based rendering engine. In this chapter we will briey introduce the motivation that

led us to choose this project, the objectives we have set and the structure of this document.

1.1.1 Project motivation and context

As performance of the 3D hardware has grown exponentially, polygons get smaller and

cover a few pixels. Overhead for triangle setup is magni�ed and is leading to a high

rendering cost per pixel. With points we are simplifying the rendering pipeline, using a

simpler and more e�cient rendering primitive than triangle s. Points are a more natural

choice when we want to represent organic models that may havevery small features and

very complex contours.

Apart from the advances in rendering hardware, there has also been a lot of progress in 3D

acquisition technology. Modern 3D scanning devices such aslaser range scanners acquire

huge amounts of point data. A usual approach to visualize this data with polygons is to

process this range data and create consistent triangle meshes. This is complicated and

time consuming task. With point based rendering this process is not necessary as it uses

point data as the basic input primitive.
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The big di�erence is that points do not have connectivity or to pology, that is why we

could need to interpolate the surface that they are representing, indeed, we need to do

this to compute an accurate illumination of the scene.

Point based rendering has evolved in the last years greatly,a lot of researchers have been

exploring solutions for the e�cient representation and rendering of point-based geometry.

Multiple conferences and workshops organized in the last years have had point-based

graphics among their topics (e.g. the �rst Symposium on Point-Based Graphics took

place in Z•urich, Switzerland, in 2004), as well as scienti�c journals and books. The huge

number of submissions for these events shows that there is a lot of interest and future in

this �eld.

In 2004, Michael Bunnel from NVIDIA published a chapter in GPU Gems 2 [PFS04] in

which he documented his method for computing ambient occlusion1 without using ray

tracing, the usual approach, but using a point cloud to approximate the computation of

illumination. This was a great idea and soon Pixar2 investigated how to implement this

same ideas in their RenderMan engine.

Pixar has used point-based rendering in di�erent movies, such as \Surf's Up" and \Pirates

of the Caribbean: Dead Man's Chest" for computing di�use global illumination (color

bleeding). The method has been used in production of more than a dozen feature �lms,

for example for rendering Davy Jones and his crew in two of the\Pirates of the Caribbean"

movies [Chr05]. Their approach is not a purely point-based rendering engine, they just

use point clouds to store some information about a polygon-based scene. Pure point-based

rendering is still in an early stage and is uncharted territory in most commercial engines.

1.1.2 Project objectives

The aim of this project is the design and implementation of a point-based rendering engine

with global illumination using ray tracing. The engine will implement the researched

solutions for the main problems that arise in the development of the di�erent stages of a

point rendering pipeline. This will allow us to provide a functional engine that covers some

of the most important aspects in the rendering pipeline. Additionally we have integrated

our engine with a popular open-source 3D software used in rendering and modeling called

Blender [Fou12].

From a research and development standpoint, this project gives us an overview of what

1A di�use shadowing e�ect.
2Pixar is a computer animation �lm studio well known for the pr oduction of multiple CG animated

feature �lms. Pixar's �lms have been created using its Photo Realistic RenderMan software, their own
implementation of the RenderMan rendering application.
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stages in a rendering pipeline for point-based graphics present a bigger challenge as of

today, being this a �eld that it is still in an early stage in th e Computer Graphics world.

Speci�cally, the main objectives of this project are:

� Build a raytracer from scratch.

� Research how traditional global illumination techniques can be applied to point-

based rendering.

� How does using points as a primitive a�ect the classical rendering pipeline.

Because points are zero-dimensional [GP07]; i.e. they do not have volume, area or any

other higher-dimensional analogue, to ray trace them we need to give the points an area

or the rays would't intersect with anything in the scene. Two di�erent approaches have

been used in the project to deal with this issue. One uses spheres as the representation of

the points (surfel), whereas the other uses discs. Additionally, normal vectors are usually

needed to compute global illumination, so it is necessary toestimate them if they are not

available. To solve this issue we will treat it as a Least Squares minimization problem,

that will estimate the best normal for a point depending on its neighbors.

A lot of math is involved in all of these steps. Because of this, the project will also

have a library that will be in charge of all the math that is needed in the engine. Once

implemented it will rarely change so it will save compiling time to have a separate library

for this task already pre-compiled.

Document structure

Because of the research nature of the project, we have several clearly de�ned stages along

the way. The document has been structured in light of this. In most chapters there is

a previous analysis step, an algorithmic solution to the problem described in the chapter

and the theoretical foundations that the solution has been based on.

Chapter 2. Plani�cation and methodology

We start by describing the methodology used for the development of the project. This

chapter also lays out the Gantt chart that illustrates the pr oject schedule.

Chapter 3. Computer Graphics basics
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This chapter briefs the basic concepts about computer graphics. How does the camera

work, what are 3D transformations and what is a surfel are allquestions answered in this

chapter.

Chapter 4. Structure of a point-based global illumination engine

This chapter describes the structure of BDE and presents theclass diagram of the engine.

We also include a state of the art about point-based rendering and global illumination.

Chapter 5. I/O and Blender integration

BDE needs to be able to load and store a lot of di�erent information to render a scene

(things like camera position, orientation, etc.) and the scene itself (the point cloud data)

has to be stored somehow (point position, normal vector if available, etc.).

This chapter explains everything related to input and output. How does the engine store

point cloud data in an ASCII text �le. How is the XML con�gurat ion �le containing all

information related to the camera and render process structured. What type of image

output does the engine support.

Since we provide an interface integrated in Blender that will allow the user to create the

dataset in Blender and render it with our engine, this chapter also describes what plugins

for blender we have made available and how to use them. This adds the project a lot of

exibility, as it is capable of rendering provided datasets or your own Blender creation.

Chapter 6. Acceleration structure: k-d tree

Since ray tracing tends to be computationally expensive dueto the great amount of ray-

scene intersection tests that need to be computed, and working with point clouds usually

means dealing with a huge amount of data, a naive approach without acceleration struc-

tures yields really bad performance results. Because of this we have used a k-d tree as

an acceleration structure to signi�cantly reduce rendering times. A k-d tree [PH10] is

a space-partitioning data structure for organizing \data" in a k-dimensional space. K-d

trees are a special case of binary space partitioning trees.The k-d tree will use up a little

more CPU time to read the dataset (building the k-d tree), but in the end the CPU time

that saves later makes up for this fact.

The chapter explains how does a k-d tree work and describes the speci�c implementation

that we have used in our project. An analysis of the k-d tree performance under di�erent

circumstances is also presented in this chapter.
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Chapter 7. Normal estimation

Surface normals are needed to compute illumination, so we have to estimate them if they

are not provided with our point cloud data. In this chapter we �rst explore di�erent

ways of calculating surfel normals in the state of the art section, then we describe the

theoretical foundations of the method chosen for our engineand lastly we explain how we

have implemented it.

Chapter 8. Ray tracing

We explain how ray tracing works, methods for ray-sphere andray-disc intersections, how

are shadows calculated, our antialiasing technique and �nally we o�er some performance

tests that show us if multithreading a�ects positively rendering times.

Chapter 9. Global illumination

This chapter provides an in-depth explanation about the illumination techniques used in

this project. It explains how we use Monte Carlo integration [Caf98] to solve the global

illumination problem that the rendering equation presents. Furthermore, a state of the

art of Monte Carlo global illumination methods is commented, as well as some basic

radiometry concepts are introduced.

Chapter 10. Conclusions and future lines of work

In this chapter we explore what we have learned with the project, analyze wether the

objectives have been met and take a look at possible lines of future work for the project.



Chapter 2

Plani�cation and methodology

This chapter explains what software development method wasused in the project. We

are strong believers in agile software development, above all for research oriented projects

like this. In the next sections, some basic concepts of this development philosophy are

introduced, as well as how it was applied in our project. Furthermore, a Gantt chart with

the di�erent steps and periods of the development is presented so that the reader can see

how long each element of the project took. Since this is a project that requires a lot of

research, it is di�cult to plan ahead; because we do not know how long we are going to

spend on a certain element. Finally we will give a cost table with the estimated project

cost.

2.1 Agile software development

Agile software development [Coc01] is a combination of development methods that use

iterative and incremental development, where requirements and solutions mature through

collaboration between self-organizing, cross-functional teams. It encourages adaptative

planning, evolutionary development and delivery, a time-boxed iterative approach, and

promotes quick and exible response to change.

2.1.1 Agile manifesto

In February of 2001, several developers met at Snowbird, Utah resort, to debate di�erent

lightweight deleopment methods. They published theManifesto for Agile Software Devel-

opment [Bec01] to de�ne the approach that is now called agile software development.

The conclusions that we can reach from the manifesto's itemsare described below:

7
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� Individuals and Interactions : In agile development self-organization and motiva-

tion are really important. Other values promoted by the manifesto are co-location1

and pair programming2.

� Working software : Working software will be utilized for more purposes than pre-

senting documents to the client.

� Customer collaboration : The software requirements cannot be fully realized from

the beginning of the software development cycle, so being intouch with the customer

is really important.

� Responding to change : Agile development is keen on fast responses to change

and continuous development.

More principles are mentioned in the manifesto, some of themare:

� Customer satisfaction by rapid delivery of useful software.

� Welcome changes even late in the development.

� Working software is the principal measure of progress.

� Maintaining a constant pace.

� Cooperation between business people and developers.

� Attention to technical excellence.

� Simplicity.

2.1.2 Description

Agile methods break down task into small increments with minimal planning and normally

long-term planning is not directly involved. Iterations are short timeframes that typically

last from one to four weeks. A team works in each iteration through a full software

development cycle; including planning, requirements analysis, design, coding, etc. This

minimizes risk and facilitates adaptation to change. An iteration may not add enough

new functionalities to warrant a market release, but the objective is to have an available

release at the end of each iteration.
1The act of placing multiple individuals within a single loca tion.
2Two programmers work together at one workstation.
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Team composition does not depend on corporate hierarchies or corporate roles of team

members. They normally have the responsability of completing tasks that deliver the

required functionalities that an iteration requires. How t o meet an iteration's objectives

is decided individually.

Agile methods encourage face-to-face communication instead of written documents if pos-

sible. Most teams work in an open o�ce (the bullpen), which makes this type of commu-

nication easier.

Each agile team contains a customer representative, that ensures that customer needs and

company goals are aligned.

Most agile methods encourage a routine that includes daily face-to-face communication

among team members. In a brief session team members tell eachother what they achieved

the previous day, what they are going to do today and the problems that have appeared.

As agile development emphasizes on working software as the primary measure of progress

and has a clear preference in face-to-face communication this results in less written docu-

mentation than other methods.

2.1.3 Application

We have used in our project several of the premises of agile software development. We have

used approximately weekly or biweekly iterations focused on completing simple objectives

that would yield working software. The work in each iteration has been constant and

diligent, focusing always on completing the task at hand, but not avoiding changes if it

was deemed necessary.

The meetings with my two advisors were kept on face-to-face basis when possible. In each

meeting we would comment what had been achieved since the last one, laid out what the

objectives were for the next iteration and talked about the roadblocks found on the task

at hand. Whenever communication in person was not possible,e-mails were exchanged

regularly if tasks where completed or any other event arised.

To keep the code accesible by everyone in the team, up to date and well organized Git

[Tor05] version control software was used. Git is free software used to manage source code

and keep distributed revision control. Every Git working di rectory is a repository with

complete history and revision tracking capabilities. In this project it was esential to have

a system like this in place, because of the research nature ofthe project. Ideas needed to

be tried without wasting time on keeping tabs on the added code, Git makes this really

easy and not problematic thanks to history and revision tracking.
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Resource Units Hours Cost per hour Total

Software 0 e
Computer 1 1000e
Analyst-programmer 1 800 15e 12000e

13000e

Table 2.1: Table showing the estimated cost of the project.

Although because of the research nature of the project it wasnot possible to estimate how

much time we would spend in each iteration, we provide a Ganttchart that depicts how

the project iterations were performed after the fact (see Figure 2.1).

We have also estimated the cost of the project as we can see in Table 2.1. It only includes

human resources and hardware costs because all the softwareused was free.
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Figure 2.1: Gantt chart of the project.
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Chapter 3

Computer Graphics basics

In this chapter, some concepts in 3D rendering are introduced with special attention to

the main components of a point-based rendering engine. We �rst describe how the ray

casting process that generates the frame-bu�er with the �nal render works. This means

that we have to explain the camera model. We will also depict how we represent points

in space by means of surfels.

Only a brief description of these concepts is presented, to get more familiarized with

Computer Graphics the book [FvDFH12] is recommended.

3.1 Rendering

Traditionally Computer Graphics has been de�ned as the computer science discipline that

is dedicated to synthesizing images algorithmically with computers. Nowadays we can �nd

even more related topics like hyper realistic photography,animation techniques, virtual

reality, etc. To generate images from three-dimensional scenes a process calledrender is

used. It is in charge of modeling objects and their properties, illumination and the camera

that will capture everything.

As has been said before, rendering is the computational process of generating an image

from a model. From this de�nition multiple interpretations are possible, from creating a

3D animation �lm to a bar chart in a spreadsheet, all of them are equally valid. Although

the term is normally used when the model we are using is of a spatial nature and more

speci�cally three-dimensional [Jas12].

Several classi�cations of rendering techniques could be made, but for this introduction we

will use two of them. On one side, if we use the type or style of the image we want to

13
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achieve, we will have:

� Non-photorealistic rendering , uses other types of e�ects that render the scene

with artistic style, intended to look like a painting or draw ing.

� Photorealistic rendering , tries to be as faithful as possible to reality. This type

of render can be subdivided in:

{ Physically-based rendering : Tries to compute an authentic simulation of

light transport through the virtual scene and its interacti on with materials and

objects. The precision of this simulation will depend on themathematical and

physical models chosen.

{ Faked : Utilizes algorithmic tricks, not trying to pretend an ad-h oc simulation

of light, usually to reduce render times.

Figure 3.1: A photorealistic render on the left, versus a non-photorealistic render on the
right.

On the other side, if we compare the interaction capabilities of the rendering application

with the user, we can divide rendering techniques in:

� O�ine rendering : Where the process that generates the image is too slow to

respond instantaneously to the user interactions. A time scale of seconds and up to

several days can be considered \slow". This happens for example when generating

photograms for a movie.

� Online rendering : Where processing time would be short enough to respond to

user interactions so that the user has the sensation of continuity. A time scale of

miliseconds would be needed to achieve this e�ect. Normally it is measured inframes

per second(FPS). A good example of this technique are videogames.



3.1. Rendering 15

Most of the rest of this document is devoted to photorealistic and o�ine rendering tech-

niques, since that is the kind of rendering BDE is focused on.

For more information about physically-based rendering thereader can consult [PH10] and

about real-time rendering [AMHH08].

3.1.1 Rendering process

There are several techniques for generating images from a model. All of them start with

a camera position, the geometry of the objects is projected in that direction one way or

another, calculating the color of each resulting pixel. Thetwo families of techniques are

the ones based onscanline rendering, where lists of geometry are traversed with horizontal

scan lines. Intermediate calculations determine what object is closer to the camera, how

do the lights in the scene a�ect the objects, etc.

And the ones based onraycasting, or ray emission, that are used by the majority of o�ine

rendering engines. These rays are \semi-in�nite" segmentsde�ned by an origin position

and a direction, that emulate a ray of light.

Raytracing [Gla89] is probably the most famous algorithm based on raycasting. Of re-

cursive nature, its principal loop traces a ray per each pixel of the image that is going to

be generated, that tries to simulate the inverse path that the light follows. When each

of these primary rays intersect with something in the scene,they cast new rays from the

intersection point to calculate things like shadows or reections.

The ponderation of each of these rays will generate a unique color for each primary ray, that

will be shown in the generated image. This topic is covered inmore depth in Chapter 8.

3.1.2 Models

Modeling describes the process of forming the shape of a virtual object in a computer.

There are several types of models (see Figure 3.2):

� Polygon-based : Describe the surface of an object as a set of polygons. Triangles

are the most commonly used polygons, since they are at and trivially convex. Most

of the existing graphics hardware is optimized for this primitive.

� Voxel-based : Divides space in a regular 3D grid where thevoxel is the smallest

unit of volume. Each cell is either �lled or not and depending on that the pixels are

shaded. Memory increases as precision is augmented.
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� Point-based : Objects are represented by point samples of their surface,that is

why they are usually calledsurfels. Each point has a position and some information

about the surface that it belongs to. Compared to the traditional triangle-based

approach, this primitive needs its own rendering techniques and its own pipeline,

since di�erent challenges must be faced. This is our case study and because of that,

this primitive will be further explained in Section 3.4.

Figure 3.2: From left to right; a polygon-based, a voxel-based and a point-based model
of a plane (2D representation).

3.2 Illumination

In rendering, the problem of \illumination" is really compl ex, because as in the real world,

the generated image depends directly on the rays of light that reach the camera sensor (in

this case, the pixel matrix). As the models that the algorithm uses are more demanding,

the image obtained will be more realistic, and the complexity of the computations and

scene description will increase.

Is this simulation, the calculation of how light is transmit ted over 3D space and scattered

in the scene is the most important and complex factor. The setof techniques and methods

that deal with this problem is normally denominated Light Transport Theory .

RGB is an additive color model in which red, green and blue arecombined to form a wide

variety of di�erent colors. The name of the model is based on the initials of the additive

primary colors, red, green and blue. It is used to describe the color of the pixels that

represent the surface of an object in the resulting image. Toknow the RGB color that an

opaque surface reects, normally abidirectional reectance distribution function (BRDF)

is used.
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Furthermore, it is necessary to know the light sources in thescene and how they work.

Some of the most used models for light sources are:

� Point lights , points in space that emit light in every single direction.

� Ambient lights , that reside in the scene volume and can be set �xed (ambient)or

stored in directional ambient maps (HDRI).

� Emitted by objects in the scene , from their surface.

Finally, the model chosen for the materials of the objects inthe scene is also important.

Thus, the aspect of a �gure in the scene can change between crystal, stone, etc. depending

on the material. This is achieved by modifying the properties of the light that arrives at

an object and then is reected back to the rest of the scene.

Because of the complex and continuous nature of light, any realistic light transport model

chosen for rendering involves solving an integral equation. As solving this integrals analyt-

ically is not a viable option, we will need to make use of numerical methods and probably

one of the best suited for this job isMonte Carlo integration. Please refer to Chapter 9

for more information about this method.

3.3 3D Euclidean space and transformations

In 3D computer graphics we normally work with a three-dimensional space of Euclidean

geometry, the term \Euclidean" is used to distinguish between these spaces and the curved

spaces of non-Euclidean geometry. The most common types of operations in Euclidean

geometry can be represented with a transformation matrix ifhomogeneus coordinates are

used. Because of this a transformationT can be used for several purposes.

Using basic linear algebra concepts, a 4� 4 matrix can be used to express the linear

transformation of a point or vector. A transformation will t hen be represented by the

elements of the 4� 4 matrix. They can also be used to perform some transformations that

are non-linear on an Euclidean space. For this reason transformation matrices are widely

used in computer graphics.

Generally a transformation is a mapping from points to points or vectors to vectors [PH10],

for example:

p0 = T (p) v0 = T (v)

To transform the points or vectors we just have to perform theappropriate matrix multi-

plications. This also allows the composition of transformations, we just have to multiply
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the transformation matrices.

Most commonly used transformations are:

� Rotation , will rotate a point or a vector by a given angle either aroundan arbitrary

axis or the x, y or z axis.

� Scaling , takes a point or a vector and will scale its x, y and z components by a

factor.

� Translation , only a�ects points and will translate coordinates x, y and z a set

amount.

� Look-at , this is a useful transformation for placing a camera in the scene. It can

be used to give the camera a position and a point at which the camera is looking at.

To illustrate how the transformations are represented by a 4� 4 matrix, equation 3.1 shows

the generic transformation matrix for a translation:

T (� x; � y; � z) =

0
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3.4 Surfels and points

A point cloud is a set of vertices or points in a three-dimensional coordinate system. These

vertices are usually positioned in 3D space and have a set of coordinates (x; y; z). These

sets of points normally are representative of the external surface of an object.

Point clouds are normally created by 3D scanners, these devices capture automatically a

large number of points on the surface of an object (see Figure3.3), and yield a point cloud

�le as a result.
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Figure 3.3: Photo overlaid atop laser scan data from a project held in early 2009 at
Kasubi Tombs.

The points from the range data represent a surface, but a point is zero-dimensional;

this means that it does not have volume, area, length or any other higher dimensional

equivalent. Usually point clouds are not directly usable in most 3D applications because

of this reason. That is why we need surfels (surface elements), that describe the surface

in a small neighborhood.

At this point we need to choose how the surface will be represented by the point. In our

project we will have two approaches. We will either represent the surfel as a sphere or a

disc.

3.4.1 Sphere approach

Figure 3.4: Visual representation of the surfel as a sphere.
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If we choose to represent the surfel as a sphere, the surfel can have have the following

parameters (see Figure 3.4):

Position: x, y and z coordinates in world space.

Radius: This will be the radius of the sphere that will represent the surfel. The engine

will also be capable of calculating the radius automatically.

Color: The surfel color in RGB parameters if we are going to use the lighting from the

scanned data.

Material: We will specify the material's parameters in case we want theengine to com-

pute global lighting.

3.4.2 Disc approach

Figure 3.5: Visual representation of the surfel as a disc.

If on the other hand we choose to represent the surfel as a disc, the surfel can have have

the following parameters (see Figure 3.5):

Position: x, y and z coordinates in world space.

Normal: A vector that represents the surface normal of the surfel. Itcan be provided or

the engine can estimate it.

Radius: This will be the radius of the sphere that will represent the surfel. The engine

will also be capable of calculating the radius automatically.
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Color: The surfel color in RGB parameters if we are going to use the lighting from the

scanned data.

Material: We will specify the material's parameters in case we want theengine to com-

pute global lighting.

3.5 Camera model

Almost everyone nowadays has used a camera and knows its basic purpose: you want to

record an image of the world (usually pressing a button) and the image is then recorded

on a �lm. One of the simplest cameras in the real world is thepinhole camera. Pinhole

cameras use a light tight space with a hole at one end. When this hole is uncovered light

enters through the hole and reaches a piece of photographic paper on the other end of

the box (see Figure 3.6). In this day and age, cameras are morecomplex than this simple

camera model, but this is a good starting point to explain howour simulation works.

Figure 3.6: Diagram explaining how a pinhole camera works.

The most important function of the camera is de�ning the part of the scene that will be

recorded on the photographic �lm. Connecting the pinhole to the edges of the �lm creates

a double pyramid that extends into the scene. Objects that are not inside this pyramid

will not be imaged on the �lm. As cameras are now more complex,we will refer to the

region that can be imaged asviewing volume.

If we were to use the pinhole as the �lm, the viewing volume would not change. When

the �lm or image is infront of the pinhole, the pinhole is frequently referred to as theeye.

In our simulated camera where the �lm is infront of the eye, we will display the amount

of light traveling from the image plane to the eye. This is where rays will be generated to

check how much light is contributed to each point in the image(frame-bu�er 1).

1The portion of memory (bu�er) reserved to maintain temporal ly an image (frame) awaiting to be sent
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The camera model used in this project supports several settings. First we explain how

this settings a�ect the camera model, after we detail how the camera model interacts with

the ray tracing process. Readers can consult [PH10] if they want to delve deeper in the

topic.

3.5.1 Camera parameters

The �rst parameter that the camera model supports is camera position . This parameter

states where the camera will be positioned in world space coordinates (x,y,z).

Next supported parameter is thecamera orientation . This parameter is a point in the

world at which the camera is looking at.

We also need to know how to orient the camera along the viewingdirection implied by

the �rst two parameters. The parameter camera up vector gives us that orientation.

We can see how this parameters are organized in camera space in Figure 3.7.

Figure 3.7: Diagram explaining the camera coordinates.

to the monitor.
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Other important parameters in a camera model are the clipping planes. Hither dictates

where the near clipping plane of the camera is located andyon indicates where the far

clipping plane is situated as we can see in Figure 3.8. The camera's clipping planes give

us the range of space along thez axis that will be visible in images. Objects that are in

front of the hither plane or beyond the yon plane will not be visible.

Figure 3.8: Representation of hither and yon planes.

The last two parameters that the camera supports are theangles of view . The angle of

view describes the angular extent of the scene captured by the camera horizontally and

vertically.

The clipping planes and the angles of view de�ne the viewing volume in our model, also

known as theviewing frustum.

3.5.2 Camera inner workings

Once we have the camera parameters we need to place the camerain the scene, and for this

we will use alook-at transformation. All of the above parameters are given in world space

coordinates, this tool gives us a transformation between world and camera coordinates.

Before we start building the frame-bu�er, we will �rst transf orm all of the scene's points

and normals (if provided) so calculating the rays that we aregoing to trace and the rest
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of the computations are simpli�ed.

As in certain contexts frustum culling can be useful, the engine o�ers the option to �lter

the viewing frustum (see Figure 3.9), although in global illumination this may not useful,

as there can be objects that inuence the viewing frustum and�ltering them would lead

to illumination errors. The viewing frustum is the region of space that will appear in the

image generated by the engine. This process of eliminating objects that are outside the

viewing frustum is called viewing frustum culling.

Figure 3.9: Diagram showing the viewing frustum.

After the optional �ltering we have to choose if we are going to use ray tracing or just

a projective camera. Our projective camera uses an orthographic model, while our ray

tracing technique uses a perspective camera model.

If we use a projective camera then we will use an orthographictransformation that will

project points to the far viewing plane. This type of transformation does not give the

e�ect of foreshortening2, it keeps lines parallel and preserves relative distance between

objects. This transformation leavesx and y coordinates unchanged, but mapsz values at

the hither plane to 0 and z values at the yon plane to 1.

Once we have the adequate coordinates we just have to map themto screen space depend-

ing on the resolution of the render. If two points are mapped to the same pixel we have to

see which one is closer in thez axis, because that will be the point that the pixel is going

to represent.

If on the contrary we chose to use ray tracing instead of a projective camera, we have to

calculate how to cast rays so that the scene will be projectedon the near viewing plane.

2Objects becoming smaller on the image plane as they get further away.
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This type of camera includes the foreshortening e�ect we mentioned before. This projec-

tion does not preserve distances or angles, and parallel lines no longer remain parallel.

Figure 3.10: Visual representation of the process of ray casting.

To achieve this e�ect using ray tracing, we create rays that start at (0,0,0) in camera

coordinates. The direction of this rays is obtained calculating where the pixel is situated in

camera coordinates, and then substracting this point minus(0,0,0). Finally we normalize

the resulting vector (see Figure 3.10).

When we have one ray for each pixel, we are ready to use ray tracing to create the frame-

bu�er. We trace each ray through the scene and see which pointsintersect with the ray.

Once we know the points that intersect with the ray, we need tochoose the one that is

closer to the near viewing plane. This will be the point that the pixel will represent.

This process implies that we have to check for intersectionsbetween each ray and the

complete scene. These computations are costly when the scenes are big and to accelerate

the ray-intersection process we need an acceleration structure. These structures reject

chunks of the scene that the ray misses and just check for intersections in parts of the

scene that the ray traverses. In our project we have chosen touse ak-d tree as we will see

in Chapter 6.
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Chapter 4

Structure of a point-based global

illumination engine

In this chapter, the pipeline of BDE is shown. Thus, a high level description of the pipeline

is done, which serves as a summary of the analysis phase for this project. The di�erent

stages of the pipeline are thoroughly described in the following chapters. Furthermore, this

chapter includes a brief state of the art on point-based rendering and global illumination.

Finally, a class diagram depicts the main design aspects of BDE.

4.1 Analysis

Figure 4.1 depicts the rendering pipeline of BDE. The �rst stage that the engine goes

through, deals with all the input data that BDE needs to render a scene. This includes

reading a con�guration �le in XML format, that contains info rmation about the camera,

render settings, etc. Once we know where the dataset with thepoint data is located, we

are ready to read the �le that contains the information. We can use the engine to read

data imported with the BDE plugin for Blender or raw data in a f ormat supported by

the engine. The last stage of the rendering pipeline, the image creation with the resulting

render, completes the I/O stage in BDE.

After creating the scene with the data read, there are a couple of optional rendering stages.

We could choose to use a k-d tree for accelerating the ray tracing process or the normal

estimation, in that case we would �rst build the k-d tree. If w e decide not to use a k-d

tree then this stage would not be necessary. We could want to estimate the normals if

they are not provided, that is another optional phase. If we do not want to calculate the

normals, we could still render the scene; but using normals provided by Blender or as a

27
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Figure 4.1: Representation of the rendering pipeline that BDE uses.

last resort use a sphere rendering technique that utilizes the surface normals of the sphere,

but a�ects the quality of the render negatively.

Either way, after those two optional phases we need to cast the rays that we are going to

need for ray tracing. In this stage we can choose to use 4x super sampling anti-aliasing

(that is, casting four rays per pixel instead of one) or just render the scene normally. Right

after creating the rays, we start testing them for intersections with the scene. Once this

phase is completed, the pixels in the frame-bu�er are shaded depending on what the rays

intersected with.

In the illumination stage we have two options as well, we can choose to use a hard shadows

technique to calculate the lighting or a brute force Monte Carlo approach detailed in

subsection 9.3.6. It is necessary to mention that although the better way to compute

illumination is the Monte Carlo technique, this is a computationally expensive process,

unlike the hard shadows approach.

4.2 State of the art

Before we go any further, we have done a little survey about the current state of the

art on point-based rendering and global illumination applied to point-based rendering.
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Additional research of the existing proposals for the most relevant stages of BDE has been

included in the corresponding chapters (Sections 7.1 and 9.3.1).

4.2.1 Point-based rendering

Point clouds are getting used more and more in movie production. One of the rendering

engines that partially uses point clouds is Pixar's RenderMan [Pix12]. PRMan tesselates

all surfaces into micropolygons. The algorithm can be extended to write out 3D data for

each micropolygon and then each micropolygon is aproximated as a microdisk (a surfel).

Point clouds can also be used to bake data [GP07]. The termbaking is used to describe

the computation and storage of data for later reuse. In the past 2D textures that required

a (u; v) parameterization of the surfaces were used. Some surfacesdid not have an in-

herent parameterization and had to be manually asigned one,this could be tedious and

unintuitive. Instead point clouds have a natural, intuitiv e and simple parameterization;

3D position (x; y; z). This are situations where storing data in point clouds to then obtain

a render based on it can be an advantage. It is interesting to mention that PRMan does

not use ray tracing to render the scene.

Another widely used alternative is Pointshop3D [ZPKG06]. It allows interactive shape and

appearance editing of 3D point-sampled geometry. One key ingredient of the software is a

new concept for interactive point cloud parameterization allowing for distortion minimal

and aliasing-free texture mapping. It supports a great dealof di�erent techniques to

alter the appearance of 3D point models, including cleaning, texturing, sculpting, carving,

�ltering and resampling.

Currently the framework only allows one directional light i n the scene. This is more of a

point cloud editing tool than a point-based rendering engine. But it is a excellent piece of

software and is a widely used tool.

We were not able to �nd any other popular or professional point-rendering engines, and

were not able to �nd any that use ray tracing. This shows that t he idea of this project is

on the cutting edge and there are no available tools that havethe same functionality.

There is a lot of research that has explored point-renderingtechniques, but the use of point

clouds is not yet mainstream. Among these point rendering researched techniques you can

�nd splatting [LMR07] or ray tracing of point models. The most stablished algorithm is

surface splatting, although more advanced e�ects such as shadows, reections, refractions,

etc. are di�cult to achieve using splatting. That is were ray tracing comes in handy,

where high quality e�ects are needed.
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4.2.2 Global Illumination in point-based rendering

The approaches for computing global illumination using point clouds that we have found

in the literature are not based on physically-based methodssuch as ray tracing, so most of

them do not produce the most accurate results. They compute an approximation based on

the point cloud [GP07], which introduces an error; though the speed of the approximation

makes up for the incorrectness. They group far away points ingroups and compute

ambient occlusion using spherical harmonics for representing the clusters of points from

di�erent directions.

It is important to note that this technique is not related to o urs, as it does not use point-

based models. They just use the point clouds to store information about polygon-based

models, for example illumination data.

They �rst bake a point cloud of di�use direct illumination. Th en they read those data

points, create an octree and represent the power for each octree node using 27 spherical

harmonics. For multiple bounces they bake a direct illumination point cloud with also the

di�use colors. After this, they just compute the indirect ill umination and multiply by the

di�use color and repeat the process for as many bounces as there are.

This methods just yield an approximation, since our engine is focused on computing global

illumination based on ray tracing and Monte Carlo, it is slower, but allows us to achieve

higher quality renders with physically-accurate illumination.

Another possibility for global illumination on point cloud s is photon mapping [Jen96]. The

photon mapping method consists of three stages: photon-tracing, photon map sorting and

rendering.

In the photon-tracing phase, photons are emitted from the light sources and then traced

through the scene using Monte Carlo Simulation. If a photon hits a di�use surface is stored

in a global photon map, a point cloud that contains data about the photon. The specular

hits are stored in a caustic photon map. Finally, if the scene contains participating media,

this hits will be stored in a volume photon map.

In the second step they are sorted into a k-d tree. The radiosity is also estimated at all

or some of the positions. The result of this step is a new pointcloud with radiosity data.

In the �nal stage, they use rays to sample the hemisphere above each point. At each ray

hit point we look up the precomputed radiosity of the nearest photon with a adecuate

surface normal.

Although this approach would yield pretty good results, the photon map needs to be

stored in memory; which is problematic when rendering complex scenes with huge photon
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maps. This in BDE is not a problem, because a photon map does not need to be created

to compute global illumination.

4.3 Design

Now that we have exposed the conceptual approach, we show theclass diagram of the

engine (see Figure 4.2). It will be further explained in the next chapters.

The class in charge of starting the application isBDE . Once the application is started,

we need to read the data �les,Parser serves that purpose. All BDE settings are stored

in BDESettings and the scene description in theScene, Surfel , Light and Material

classes. TheBRDF class makes it possible to extend our engine with more accurate and

complex light transport models that calculate the the reection of light on a material.

Scene after this step can be used to calculateSurfel normals or create aKDTreeAccel

class to accelerate the rendering process.

The next step is starting the ray tracing rendering process,that is done using theRender

class, that relies onRay , Camera and MonteCarlo to render the scene provided.

To support all of this operations, we will have a math library. It uses Point for cal-

culations related to point math, Vector for mathematical operations related to vectors

and Transform in conjuction with Matrix4x4 to apply transformations to points and

vectors.
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Figure 4.2: BDE class diagram.



Chapter 5

I/O and Blender integration

This chapter explains how input and output works in the engine and also describes how

the engine interacts with Blender.

5.1 Input and output

BDE supports a variety of input formats for the point cloud da ta, and also supports XML

con�guration �les to store the render settings, camera settings, etc. The supported output

image �le format for rendered images is PNG. We will further explain all the supported

formats in the next subsections.

5.1.1 Design

Figure 5.1: I/O class diagram.

33
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In Figure 5.1 we can see the details of the input and output classes. TheParser class

is in charge of parsing the XML con�g �le, the point cloud �le a nd the light source �le.

The settings are stored inBDESettings , so that they can be accessed whenever needed.

Finally the Image class handles PNG image creation with the �nal render.

5.1.2 Point cloud input formats

The engine reads plain ASCII data �les so we can intuitively see the data stored in the

�les. We can also make quick changes without having to rewrite the complete data �le

again without further problems. BDE depending on the information stored in the data

�le expects a certain �le structure.

For distinguishing between di�erent point cloud formats, th at may evolve and include new

data, we have implemented version support in the format. Thedata �le version number

will be the �rst element in the data �le. Speci�cally the stru cture of a data �le is:

Version: The data �le version number.

Object transformations: The transformations that will be applied to the object. Firs t,

a line with the translation coordinates of the object: x y z. The next line especi�es

the rotation in the x y z axes (value needs to be provided in radians). The following

line will say how much to scale the object inx y z axes. All of this parameters only

have to be speci�ed if a transformation wants to be applied tothe object.

Material properties: Information about the material of the object. All of this par am-

eters are optional too, they are just needed if we want to use ray tracing. If we

wanted to just use rasterizing material properties are not needed. The �rst line are

the ambient color's R G B parameters that range between 0 and 1. The adjacent line

is the di�use color in the same format. The following line represents the specular

color also in the same format. The last line has the Phong exponent of the material

and also the material's light emission parameter.

Number of points: This line contains the number of points in an object. This parameter

is not necessary if we only have one object in the scene.

Surfel data: In the following lines the surfel data is stored. The surfel position in x y

z coordinates and the normal vector also in the same format. The normal vector is

optional and does not go in the next line, it follows the position. Another optional

parameter that is needed if we want to use a projective rendering approach is the

point RGB color, stored in a oat that contains 8 bits per chan nel and also goes in

the same line.
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We now present an example of how a point cloud data �le is structured, this is one example

that would have transformations, a material and �nally surf el information with position

and normal (see Figure 5.2).

Figure 5.2: Data �le structure example.

If the user wants to use point lights, they are read from another ASCII �le that only

contains the light position in x y z coordinates. The egine expects one light per line.

The classParser contains methods for reading the di�erent types of point cloud �les.

5.1.3 XML con�guration �le format

We chose to use XML as the encoding language for the con�guration �les, because is

human-readable, machine-readable and emphasizes simplicity, generality, and usability.

The structure of the con�g �les is as follows:

XML declaration: Information about XML itself.

Scene tag: Information about the scene.

Camera element: This element contains information about the camera. It contains

several attributes:

� p x, p y and p z contain the camera position.

� d x, d y and d z store the point at which the camera is looking.

� up x, up y and up z contain the camera up vector.

� hither and yon are the camera's near and far clipping planes.
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� angle x and angle y store the camera's viewing angles.

Render element: The render element stores information related to the render. It has

the following attributes:

� width and height are the horizontal and vertical resolution of the render.

� surfel radius stores the surfel radius.

� AA lets us choose if we want to use x4 SSAA.

� normal est and est accel lets us choose if we want normal estimation and in

case we do, if we want to accelerate it using the k-d tree.

� r func, max dist and min dist control the behaviour of the normal estimation

algorithm.

� kd accel and kd nodes let us choose if we want to use a k-d tree to accelerate

the render and in case we do, establish how many surfels per leaf node we want

to have.

Data element: This element tells the engine where the point cloud data is stored. It has

only one attribute:

� d path path to the point cloud data �le.

As in the previous subsection, we now show an example XML con�guration �le (see

Figure 5.3).

Figure 5.3: XML con�guration �le example.

The class in charge of reading the XML �les isParser , it contains a method for reading

the con�guration �les.
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5.1.4 Image output

The supported image output is PNG. The PNG format used supports 8 bits per channel

and three channels, one per RGB component. Any image viewer that supports PNG

images will be able to read the images created by the engine.

Figure 5.4: Example image,Suzanne, rendered in BDE.

The engine has anImage class in charge of creating the PNG image. It just needs a three

dimensional oat vector with the image pixel values and oncewe have that we can use the

following code to create the PNG image:

Image � im = new Image ( image name , width , height , p i x e l d a t a ) ;

im� > w r i t e p n g f i l e ( image name ) ;

delete im ;

The oat vector needed has three dimensions, two represent the width and height of the

image, and the last dimension stores the RGB values of the corresponding pixel.

5.2 Blender integration

For ease of use and to have a visual interface so camera placement, light source placement,

object placement, etc. are way more intuitive; we have created a Blender plugin to make

the engine compatible with this popular free software tool.

The plugin is programmed in Python and just needs to be loadedfrom Blender. Once we

load the plugin, we will get a new Black Diamond Engine panel,in which we can con�gure

BDE's options and when we are done press the Render button andwe will render the

scene using BDE instead of blender.
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5.2.1 Loading the plugin

To load the plugin in blender we just need to:

1. Select theText Editor among window types or pressShift+F11 .

2. SelectText ! Open Text Block and double click on the script �le.

3. Click on Run Script button.

Once we have completed these steps we will see the BDE panel (see Figure 5.5).

Figure 5.5: BDE plugin in Blender.

5.2.2 Using the plugin

Once we have our scene setup in Blender, we just need to adjustBDE's settings. The

plugin will make sure that every object is rendered in BDE. The plugin supports:

� Meshes.

� Materials.

� Objects that emit light.
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� Point lights.

� Cameras.

� Transformations (translation, rotation and scaling).

Everything will be placed exactly in the same way than in the blender scene. The plugin

also extracts information about:

� Resolution in Render Presets.

� Internal camera data.

� Surface normals.

The settings in the BDE panel are pretty much self-explanatory or have been already

explained in the above section, but if there is any doubt about what they do; just hovering

over one will display a tooltip with a simple explanation about what it does.

The plugin will also warn the user if a material is not set for an object or if there is any

other problem, with an error message.

5.2.3 Normal visualization plugin

We also provide a plugin for Blender that shows the surfel normals stored in a �le. The

plugin reads the �le and draws the normals in blender. This tool can be used to see in

Blender the normals estimated by BDE and watch them from di�erent perspectives. This

is a useful tool for testing and debugging purposes, becauseyou can see really well if there

are any anomalies in the normal calculation process.

The normals will be represented by a black line coming out of the corresponding surfel

(see Figure 5.6).

5.2.4 Point cloud visualization plugin

The last plugin we o�er allows us to load a simple point cloud �l e in Blender and represent

those points as UV spheres in Blender.

This plugin is also a useful testing tool, it allows us to see the point cloud data in real

time and visualize it from multiple positions without havin g to change camera parameters

or rendering anything.
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Figure 5.6: Normal visualization plugin in Blender.



Chapter 6

Acceleration structure: k-d tree

Usually, spacial acceleration structures are used in rendering to improve the performance

of certain operations. In our case, the operations that we need to accelerate the most

are ray-scene intersections. The acceleration of ray-scene intersections is key in global

illumination as the number of ray-scene intersection testsincrease exponentially. Our k-d

tree is based on the implementation found in [PH10].

Binary space partitioning trees adaptatively subdivide space into regions of smallersize.

A BSP tree starts out with a bounding box that encloses the whole scene. If the number

of points in the scene is over a threshold, then the bounding box is split by a plane (see a

2D example in Figure 6.1). A k-d tree requires the splitting plane to be perpendicular to

one of the coordinate axes; this makes both tree traversal and construction more e�cient

[PH10, Sam06].

6.1 Design

As we can see in Figure 6.2, theKdTreeAccel class handles the k-d tree creation and

traversal. MemoryArena is in charge of making sure that the k-d tree makes e�cient use

of memory, so it encapsulates memory management, an esential aspect as far as memory is

concerned. Finally, the BBox class is responsible for creating bounding boxes for several

types of objects, such as k-d tree nodes or other primitives in the scene.

41
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Figure 6.1: Bounding box splitting process.

6.2 Tree representation

The k-d tree is a binary tree, in which each interior node has two children and where the

tree leaves store the points that overlap them. The interiornodes of the tree must provide

at least the following information:

Split axis: Either x, y or z.

Split position: The position of the plane in which the axis was split.

Children: Information that indicates how to reach the child nodes.

Each leaf node just needs to know which points overlap it.

6.3 Tree construction

The k-d tree is constructed with a recursive top down algorithm. At each stage we have an

axis aligned region and a number of points that overlaps thatregion. Then we either split

the region and then make it an interior node, or we create a leaf node with the overlapping

points, ending the recursion.
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Figure 6.2: k-d tree class diagram.

We also need to obtain a maximum tree depth if none is provided. Although the building

process normally ends with a reasonable depth, it is important to limit the depth of the

tree so that in extreme cases the memory used will not grow inde�nitely. A value of

8 + 1:3 � log(N ) has empirically been proven to give a reasonable maximum depth for a

variety of scenes in [PH10].

We create a leaf node (that stops the recursion) either if we have a small number of points

in the region or if we reach the maximum depth.

If the node is an internal one, it's necessary to choose a splitting plane, classify the points

with respect to the plane and recurse.

The implementation chooses a split depending on a cost modelthat calculates the com-

putational expense of doing ray-intersection tests. The goal is to minimize the total cost,

so the cost for each node is minimized. The cost is calculatedfor a series of candidate

splitting planes and the one that gives the lowest cost is chosen.

The cost model intention is clear: at any node of the tree we could just create a leaf node

from all the points in the region. In that case, a ray that will pass through this region will
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be tested against all this points with a computational cost of

NX

i = i

t i (i )

whereN is the number of points in the region andt i (i ) is the time to compute a intersection

with the i th point.

Another option is to split the region. If we do that, the cost w ill be

t t + pB

NBX

i =1

t i (bi ) + pA

NAX

i =1

t i (ai )

wheret t is the time that traversing the interior node and determining which of the children

the ray passes through takes,pB and pA are the probabilities that the ray passes through

each one of the two regions below and above the splitting plane, beingbi and ai the indices

of points below and above the splitting plane, andNB and NA the number of points that

overlap the regions below and above the splitting plane, respectively. The splitting plane

a�ects both the probabilities as well as the series of points on each side of the splitting

plane.

We will assume that t i (i ) has the same value for all of the points for simpli�cation purposes.

The user has the option to set the intersection costt i and the traversal cost t t . The ratio

between this two parameters is what determines the way that the algorithm will behave.

It is also preferable giving a little more importance to choosing splitting planes where

one of the child nodes has no points that overlap it, because rays that pass through this

regions can advance to the next node without testing for intersections. After applying all

these changes, the new costs are on one hand

t i N

and on the other

t t + (1 � be)(pB NB t i + pA NA t i )

wherebe is a \bonus" value that is worth zero unless one of the two regions has no points.

The probabilities PB and PA that a random ray that passes through B will also pass

trough A is the division of their surface areas,sA and sB :

p(A j B ) =
sA

sB
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Because we need the cost of the rays that pass through the interior node, we can use this

result as is. So if we choose to split a region A into two subregions B and C, the probabilities

that the ray also passes through each subregion aresB =sA and sC =sA , respectively.

Now that we have a way to calculate probabilities for the costmodel, tha last thing that

we need solve is how to generate caditate positions for splitting and how to compute the

cost for the candidates. The ideal place to split the regionsis on one of the faces of the

point's bounding boxes. Not taking the bounding box in account could generate artifacts

when checking for intersections. To check for the best splitting plane we will project the

bounding boxes onto each axis and choose the one with the lowest cost.

It may happen that no possible splits are available for a node(see Figure 6.3). In this

case there would be no candidate position to split the node inany of the axes, because

splitting the node would yield no bene�ts since each possible child node would still have

the same number of points. When this happens there is no otheroption apart from giving

up on it and making it a leaf node.

Figure 6.3: Multiple bounding boxes overlapping a k-d tree node.

Another possible case, is that the best split will have a higher cost than not splitting the

node. If the cost is a lot worse and there are not a lot of pointsa leaf node is created. If

not, the number of bad splits is stored, because sometimes isbest to split the node as at

a later split may be able to �nd better splits given less number of points to consider.



6.4. Tree traversal 46

6.4 Tree traversal

Intersecting the ray with the bounding box of the complete tree yields initial tmin and

tmax values that are the ray's parametric ranges. If the ray misses the bounds, we now

that the ray does not intersect with anything. If the ray inte rsects with the bounding

box, we start the descent into the tree, starting at the root node. At each interior node

it determines in which of the child nodes the ray enters �rst and then we process them in

the correct order. This process ends when the closest intersection is found or when the

ray �nally exits the tree.

Figure 6.4: Diagram to explain visually the tree traversal process.

When the ray hits the root node, then we have to consider the two children of the root

node. The ray �rst enters the child node labeled \near", where the parametric range

is [tmin ; tsplit ]. If the node labeled \near" is a leaf we perform the intersection tests if

necessary, if not we process its child nodes. If no hit was found in the node, or if we

were to �nd a hit beyond [ tmin ; tsplit ], then the node labeled \far" would be processed.

This process continues until processing tree nodes in a depth-�rst front-to-back traversal

is complete and the ray exits the tree or the closest intersection is found as we mentioned

before (see Figure 6.4).
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6.5 Performance tests

This section presents some performance tests that evaluatethe e�ectiveness of the k-d

tree acceleration structure. All the tests were performed on a single thread of a Intel Core

i5-2557M CPU and 4 GB of 1333 MHz DDR3 RAM.

In the 3D graph of Figure 6.5, we represent surfels and rays versus time. In this graph

we can see that the k-d tree does a marvelous job, even as we augment the surfels expo-

nentially. It only shows a big increase in rendering times for the case with the most rays

and over 500k surfels, and this is because to keep the k-d treecreation times arround an

acceptable value, for this last case we increased the numberof surfels per node in the k-d

tree from 10 to 100.
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Figure 6.5: 3D plot that shows how surfels and rays a�ect the rendering times.

The lesson that we learn from this graph, is that the number ofsurfels does not a�ect the

rendering time very much thanks to the k-d tree. What really adds up to the rendering

time is the number of rays traced, this means that as you increase the resolution, rendering

times go up. This shows us that theoretically how many surfels are in the scene should
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not inuence the rendering times, only the k-d tree creation time.

It is important to know that the number of surfels per node wil l ultimately dictate the

number of intersection test that we have to perform, so the less the better.

In the next plot, we can see the performance improvement achieved with the k-d tree (see

Figure 6.6).
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Figure 6.6: Plot showing the time it takes to render a scene with or without a k-d tree.

The time reduction is remarkable, with a k-d tree the time it t akes to render the scene

is really low, and the tree traversal time remains almost constant as you increase the

number of surfels. Only the memory the k-d tree occupies and the construction time

slightly increase. While not using the k-d tree leaves us with huge rendering times that

augment steadily as you increase the number of surfels.
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Time (s)

Surfels with k-d tree without k-d tree

148 0.2937 1.008
548 0.3268 2.737
2116 0.4045 9.458
8324 1.6801 35.942
33028 16.8858 152.141

Table 6.1: Table showing the data involved in Figure 6.6.
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Chapter 7

Normal estimation

When using realistic illumination models, surface normal vectors of all the objects in the

scene are needed. Although in polygon-based rendering thisis trivial, when working with

point clouds without topology it presents a problem. Therefore, if normal vectors of the

surfels are not part of the input dataset (obtained from the modeling process) we will have

to estimate them.

In this chapter we address the challenge that obtaining the normal vectors of a point cloud

presents, this in essence is the same as estimating what points belong to the same surface.

We present a brief state of the art and the approach included in BDE.

7.1 State of the art

There are two main techniques used for normal estimation in point clouds. A numeri-

cal approach using optimization [GP07] and acombinatorial method that uses a Delau-

nay/Voronoi property [NM99]. Numerical methods normally w ork well in the presence of

noise. Combinatorial methods traditionally have not worked well with noise, but there

have been some advances in that regard [DLS05].

We have chosen the numerical approach because we want to be able to use noisy datasets.

The theory and implementation behind our method will be explained in the next sections.

Plane �tting methods. The normal in each point is estimated based on the plane ob-

tained by applying a least squares method to the k-nearest neighbors of the corresponding

point. This method can be improved giving more importance to the closest neighbors.

Another improvement can be not using the samek for all the points. As a similar method
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to this one is used in our engine and it is thoroughly explained in the next section, we will

not delve deeper in this technique.

Big Delaunay ball method. For a group of points P, being V the Voronoi diagram

and D the dual Delaunay triangulation of P. The voronoi cell for a point p will be Vp.

The line that unites p and the furthest vertex in Vp (its pole) can be used to estimate the

normal at p and even an orientation. This fact will not be true with noisy samples, thats

where the Delaunay ball comes in.

A ball is called Delaunay if it has a center at a Voronoi vertex v and a radius kv � pk

where v 2 Vp. The balls with poles situated in its center are calledpolar balls.

If p is in the boundary of a polar ball B the line that joins p and the center ofB estimates

the normal at p. It has been observed that if there is some noise, certain Delaunay balls

will remain relatively big and can be considered polar balls. Then we can rede�ne the pole

for a point p as the furthest vertex of the Vp whose Delauney ball is big. The normal can

the be estimated from the segment throughp and its pole.

This algorithm is called Big Delauney Ball algorithm or BDB.

7.2 Moving Least Squares for normal estimation

If normals are not part of the dataset provided, we can try to estimate them with the

following method that is based on a numerical optimization approach [GP07]. We assume

that we need to calculate the normaln in a location q. Then the points that are close to

q will describe the surface arround the pointq. So a tangent in q should be as close as

possible to this surrounding points, and the normal will be perpendicular to this tangent

plane. To determine a tangent plane inq, we can formulate it as a least squares problem

(see Figure 7.1).

We are searching for a plane that yields a normalknk = 1 passing through q that minimizes

the squares (n> (q � p i ))
2. But as we only want to consider pointsp i that are close to q,

we will use a weight function � . Once we incorporate the locally weighted function then

n is de�ned by the next minimization problem:

min
knk=1

X

i

(n> (p i � q))2� (kp i � qk):

This would be a non-linear optimization problem, because ofthe constraint knk = 1. To

be able to get a computable solution, we use the matrices of the outer product (p i � q) 
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Figure 7.1: A unit normal that is orthogonal to the plane that minimizes the square
distances to the points is calculated.

(p i � q)> . Then we can rewrite the function that has to be minimized as

n>

 
X

i

(p i � q) 
 (p i � q)> � (kp i � qk)

!

n

and then compute the eigenvalues/eigenvectors of this resulting matrix, the eigenvector

corresponding to the lowest eigenvalue will be our best estimation for the normal.

The chosen weight function is� (� ) = � � r that for a r > 0 will give more importance to

the neighbors closer to the point in which we want to calculate n.

It is important to note that this method gives us a normal dire ction, not an orientation.

The orientation will have to be given or estimated.

7.3 Algorithm: design and implementation

The class in charge of normal estimation isScene (see Figure 7.2). There are two methods

that take care of estimating normals: get normals accel() and get normals (). The

former uses k-d tree acceleration for neighbour search, whereas the latter does not.

The algorithm still acts the same way in both methods, the only thing that changes is
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how we obtain the neighbours.

For all surfels in the scene we obtain their neighbours inside a maximum distance. Then

we calculate the sum of outer product matrices (resulting from the distance vector between

point and neighbour) multiplied by the corresponding weight � . There is one outer product

sumatory matrix per point.

Once we are done and we have the resulting matrixM , we need to solve the equation

jM � �I j = 0. This is a third degree polynomial in � . The roots of this polynomial will

be the eigenvalues of the matrix.

Once we have the three resulting eigenvalues, we will use thesmallest one to calculate the

corresponding eigenvector that will be our estimated normal.

To accomplish this, we will solveMv = �v . This system of equations will provide us the

eigenvectorv. This eigenvector will be the normal in the corresponding point.

Finally we will show the pseudocode for the normal estimation process:

for ( int i = 0 ; i < c loud . s i z e ( ) ; i ++) f

for ( int j = 0 ; j < neighbour . s i z e ( ) ; j++)

M += DIST � theta ;

det = determinant calculation (M � lambda ) ;

e i ge n v a l u e s = f ind rea l roots ( det ) ;

e igenva lue = min ( e i ge n v a l u e s ) ;

normal = solve eigenvector system ( e igenva lue ) ;

g
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Figure 7.2: Class diagram of theScene class.
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Chapter 8

Ray tracing

According to Figure 4.1, once the input point cloud dataset has been read and the normal

vectors for all the surfels in the scene are available, we areready to start tracing rays and

check with what objects they intersect in the scene. To know what a ray intersects with,

we have to run a series of disc or sphere intersection tests.

The k-d tree accelerates this process greatly, but as it can still be demanding depending on

the resolution, we have used threadsafe code so it can make use of all the threads available

in the system running the engine, this makes it possible to exploit current systems with

multi-core processors.

In this chapter we �rst include a brief introduction about ra y tracing. Then we lay out the

design of the classes involved in ray tracing. Next the process of ray-scene intersection is

detailed. Once we know what a ray has intersected with in the scene we need a technique

that lets us know if an object is shadowed, our technique is also explained in this chapter.

Some problems can arise with a render, like aliasing or surfel overlaping when the model

is not optimal. To deal with overlapping problems we have devised a technique based

on a weighted mean that we also detail in this chapter. Lots oftechniques exist to solve

aliasing problems, we describe the approach that we used that employs supersampling

anti-aliasing. We �nally o�er some performance testing in which we can see how ray

tracing performance varies when using multithreading.

8.1 Introduction

In computer graphics, ray tracing is a method that generatesan image by tracing the path

that light follows through pixels in an image plane and simulating its behaviour when it
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interacts with virtual objects (see Figure 8.1).

Figure 8.1: Image that shows how the ray tracing algorithm works.

This technique is capable of producing realistic images, usually more physically accurate

than scanline rendering methods, but at a higher computational cost. This is possible

due to the fact that the algorithm is capable of simulating light behaviour in a more

natural way. Ray tracing can be used to simulate several optical e�ects, such as reection,

refraction, etc.

We normally trace a path (ray) from an imaginary eye (the camera) through each pixel

of the image that is going to be created, and then calculate the colour that would be

visible through it. Tipically each ray must be tested for int ersection at least with a

subset of the objects present in the scene. Once you identifythe nearest object, the

algorithm estimates the incoming light at the point of inter section, the material properties

of the object and combines these two to provide a �nal color for the corresponding pixel.

Certain illumination algorithms (i.e. Monte Carlo integra tion) and reective or translucent

materials would require more rays to be cast across the scene. Ray tracing makes this

really easy because of the nature of the algorithm, that is inspired in how light behaves

physically. For more information on ray tracing methods please refer to [PH10].

8.2 Design

As can be seen in Figure 8.2Render is the most important class in the rendering process,

it is in charge of creating the rays with Ray , checking for intersections and shading the

pixels. Camera handles all the operations related to the camera inScene. This last

class contains the scene description. A scene is composed ofLight s, Surfel s and their
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correspondingMaterial s.
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Figure 8.2: Class diagram of the elements involved in ray tracing.
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8.3 Ray-scene intersection

When using ray tracing, we have to know what do rays intersectwith in the scene. We

have two types of intersections:

Ray-sphere intersection. Being d the ray direction, o the ray origin, [tmin ; tmax ] the

ray's parametric range, p the surfel's position and r the surfel's radius. To know the

intersection point between the ray an the sphere with centerp that will have the following

equation:

(x � px )2 + ( y � py)2 + ( z � pz)2 = r 2

substituting the ray in the equation we just get a quadratic equation that we solve for t,

after simplifying the equation we have

t =
� B �

p
B 2 � AC
A

being

B = ( o � p) � d

C = ( o � p)2 � r 2

A = d2 = 1

because the ray direction is a unit vector,d2 = 1 and the cuadratic equation ends up being

t = � B �
p

B 2 � C

and this equation is easily solved. If there are no real rootsthe ray will miss the sphere. If

there are roots we will select the smallest one, because thatwill be the closest hit on the

sphere. Once we have the closest hit we just have to check if itis inside the parametric

range [tmin ; tmax ] of the ray for it to be a valid hit.

Ray-disc intersection. Being d the ray direction, o the ray origin, [tmin ; tmax ] the ray's

parametric range, p the surfel's position, r the surfel's radius andn the surfel normal. To

know the intersection point between a disc and the ray we willperform the following

calculations.

First we will check if the ray intersects with an in�ne plane o rthogonal to the surfel's

normal. We check for that intersection �rst writing the plan e in verctor notation

(p0 � p) � n = 0
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and the ray also in that same notation

p0 = o + td:

We substitute the ray in to the plane equation and get

t =
(p � o) � n

d � n

then we solve fort. If there is no intersection, the above denominator will be 0. In any

other case the ray intersects the plane once and the intersection will be t.

Once we know that the ray intersects with the plane, we just have to check that the

distance to the position of the surfel is not greater thanr . We do that using the following

comparison

kr (t) � pk < r

being r (t) the point obtained from subtituting t in the ray's parametric equation.

8.4 Shadows

Figure 8.3: Diagram explaining how a shadow ray works. In this case there is nothing
occluding the path between the object and the light source.
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Once we know where the ray intersects an object, we need to know if that object receives

light or is blocked by another one. To know this we trace a shadow ray from the object's

hit point to the light source. If there is no hit in the paramet ric range of the ray, light

is not blocked (see Figure 8.3). If there was any hit between the light source and the hit

point then the path is obstructed by another object.

This lighting model does not consider indirect paths to the light sources, that phenomena

will be considered in the global illumination model.

8.5 Surfel overlapping

Sometimes when surfels are too close together or have too much radius, they overlap each

other. If the surface is not curved, it is not a problem; but when the surface is curved the

overlapping produces a non visually pleasing e�ect (see Figure 8.4).

Figure 8.4: A sphere with lots of overlapped surfels.

This kind of e�ect can be countered using a weighted average when shading the pixel that

represents the overlapped surfels (see Figure 8.5).

To achieve this e�ect, we calculate

C =
P N

i =1 Ci � wi
P N

i =1 wi
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Figure 8.5: The same sphere of Figure 8.4 but rendered with our technique.

where N is the number of surfels that overlap, Ci is the color of each surfel,P the hit

point, di the distance betweenP and the center of the surfel, r i the radius of the surfel

and

wi = (1 �
di

r i
):

Figure 8.6: Visual representation of the terms in the weighted average.

To better understand the technique, Figure 8.6 o�ers a visual representation of all the

terms involved in the calculation of the weighted mean.
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C will be the �nal color of the corresponding pixel, this will m ake the surface smoother

and decrease the artifacts caused by surfel overlapping. Itshould be noted that if the

model has constant point density, this technique should notbe necessary.

8.6 Supersampling anti-aliasing

There are a lot of techniques that we can use to reduce aliasing. We will describe our

current anti-aliasing method that is based on supersampling.

Supersampling is the idea of taking more individual color samples for each pixel so we

can reduce aliasing problems, like for example stair e�ect onborders. In our method, we

will take four samples instead of one per each pixel and set the pixel color to the average

of the four samples. This will be e�ectively 4x supersampling, because we are computing

four times more rays for each pixel.

We present the following pseudo code to show how we can do this. For each pixel we have

to launch four rays, but each ray will only contribute a quart er.

for ( int i = 0 ; i < r e s o l u t i o n ; i ++) f

f loa t rgb =0;

i f ( s u b p i x e l r a y s . in tersect ( ) ) f

shading ( s u b p i x e l r a y s ) ;

rgb += 0.25 � s u b p i x e l r a y s . rgb ;

g

return rgb ;

g
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8.7 Performance tests

The ray tracing process in the engine is programmed so that the use of multithreading

is optional. If the user wants to use multithreading, he would just need an OpenMP

compatible compiler. The engine will fully make use of all threads available, not only for

the ray tracing process but other computationally expensive parts of the engine. The test

was performed on a Intel Core i5-2557M CPU and 4 GB of 1333 MHz DDR3 RAM.

We now proceed to show a graph that will compare the use of multithreading to using a

single thread in the ray tracing stage (see Figure 8.7), thisis the most computationally

expensive part of the rendering pipeline and were multithreading will shine.
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Figure 8.7: Plot that shows the time it takes to ray trace a scene with and without
multithreading.

As we can observe in the plot, just with one more thread there is a big gap in the rendering

times. As we increase the number of rays to trace, the di�erence between single and

multithread deepens. Taking into account that the number of rays to trace using Monte

Carlo augments exponentially, the use of multiple threads will be even more important

and the performance gap will be huge.

As you increase the number of threads, with a high number of rays to trace; performance

will improve greatly, there is no doubt that the use of multit hreading is key in this stage
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of the rendering pipeline.
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Chapter 9

Global illumination

Although the computation of direct shadows in a scene may o�era certain realistic look,

it is the use of physically-based global illumination models that allows us to achieve highly

realistic 3D images. These kind of methods try to deal with the real behaviour of light

in an environment, taking into account not only direct illumination 1 but also indirect

illumination 2 to obtain a physically accurate result.

Reections and shadows are part of global illumination, when we simulate them, objects

have an e�ect upon one another (unlike when a�ected by only a direct light). Images

rendered using global illumination techniques normally appear more realistic than using

direct illumination algorithms. At the cost of being much mo re computationally expensive.

Radiosity, ray tracing, beam tracing, cone tracing, path tracing, Metropolis light transport,

ambient occlusion, photon mapping, and image based lighting are algorithms used in global

illumination, some of them can be used together to generate more accurate images.

In this chapter we present how our engine applies ray tracingto simulate light transport

in a 3D virtual scene. As commented in the previous chapter, ray tracing is a method

especially well �tted for simulating light transport, sinc e lots of di�erent e�ects may be

incrementally implemented. Our engine includes a simple local illumination algorithm,

as well as a Monte Carlo based global illumination approach.Quality and performance

results are discussed.

1Light that impacts the object directly from a light source.
2Light from the source that is reected by other surfaces in th e scene and after that gets to the object.
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9.1 Shading

In computer graphics, shading is in charge of altering the color of an object in 3D space

to create a realistic e�ect, mainly depending on the distanceand angle to light sources.

Shading is performed during the rendering process, thats why the class that takes care of

shading isRender . Shading is calculated for each pixel based on what a ray intersected

with, the lights in the scene, etc. It provides a pixel color that will later be used to create

the rendered image.

BDE supports two types of shading. We can either use Monte Carlo or hard shadows

with Phong shading. The �rs technique, is vastly more time consuming depending on the

number of samples chosen to solve the lighting integral. Thesecond is way faster and

yields pretty good results. Although the best quality will b e provided by Monte Carlo,

this high quality comes at a cost, the render will take a lot more time.

9.2 Ray tracing with hard shadows and Phong shading

If we were to use this technique, the �rst step is checking which of the camera rays intersect

with something in the scene. If the ray intersects with an object, then we have to shade the

corresponding pixel. If it does not intersect with anything, we just leave the ambient color.

for ( int i = 0 ; i < rays . s i z e ( ) ; i ++) f

i f ( ray intersects ( ) ) f

p i x e l = shading ( ) ;

g e lse f

p i x e l = ambient color ( ) ;

g

g

To compute the shading, we �rst need to know if there is an object blocking the path to

the light as we saw in Section 8.4.
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for ( int i = 0 ; i < l i g h t s . s i z e ( ) ; i ++) f

i f ( l ight occluded ( ) ) continue ;

compute diffuse and specular ref lect ion ( ) ;

g

As we see in the pseudo code, if the light source is unoccluded; we have to compute the

specular and di�use contributions of the corresponding light source. This two steps are

explained in the next two subsections. Figure 9.1 shows an example of how a render using

this simple shading looks like.

Figure 9.1: Example of a scene rendered with BDE and the technique described in this
section.
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9.2.1 Di�use reection

Di�use surfaces scatter light equally in all directions (seeFigure 9.2). Two examples of

nearly-ideal di�use surfaces are a chalkboard and matte paint.

Figure 9.2: Di�use reection of light.

To obtain the factor that speci�es the amount of light reect ed we will use a Lambertian

term:
l � n
jl j jnj

Being l the vector resulting from substracting the light position minus the hit point and

n the surfel normal.

Once we have this term, we just have to multiply by the di�use color of the surfel's material

and we will have the di�use component of the light reection.

9.2.2 Specular reection

Specular surfaces reect light preferentially in a set of directions (see Figure 9.3). An

example of specular surface would be a glossy material, witha mirror o�ering the perfect

specular reection.
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Figure 9.3: Specular reection of light.

To obtain the factor that speci�es the amount of light reect ed we will use a Phong term:

�
h � n
jhj jnj

� f

Being n the surfel's normal, f the material's Phong exponent andh Blinn's halfway vector:

h = l + v

In which v is the view ray direction and l the same as before, the light position minus the

surfel's hit point.

9.3 Monte Carlo

Illumination in the real world cannot be reproduced only wit h a direct illumination model,

you need to account for indirect illumination as well. That i s where ray tracing combined

with Monte Carlo integration comes in. It makes it possible to compute global illumina-

tion with indirect lighting. E�ects like color bleeding or co ntact shadows are naturally

simulated by this model.
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As we try to emulate with more precision reality, models will become more computationally

expensive and we will get more realistic render results. Thescene description will also be

more complex, making the model even more computationally intensive.

The in�nitesimal and continuous nature of light will result in the appearance of integrals

in the mathematical description of the chosen model. As solving this integrals analytically

is not a viable option, we will need to use numerical methods like Monte Carlo to solve

them.

Monte Carlo is an algorithm that relies on repeated random orquasi-random sampling to

compute results. This method is normally used when it is imposible to calculate a result

with a deterministic algorithm.

The Monte Carlo method was created in the 1940s by John von Neumann, Stanislaw Ulam

and Nicholas Metropolis, it was named after the Monte Carlo Casino a famous place were

Ulam's uncle would gamble away his money.

9.3.1 State of the art

As realistic image synthesis has more applications in areassuch as design, movies, ar-

chitecture, etc. a common trend in all of them is demanding more realistic images of

increasingly complex models. Monte Carlo based techniquesare probably the best meth-

ods that can deal with this grade of complexity. Advances in algorithms and hardware has

made Monte Carlo a natural choice for solving most problems.This has made an impact

in classic techniques like radiosity that was the �rst choice for most graphics researchers

a while back.

As we see in [AFH+ 01] we can apply Monte Carlo integration to calculate the direct

lighting at a certain point from a light source in the presence of objects that can occlude

it. We can also compute more advanced e�ects like indirect illumination. There are several

monte carlo techniques that are widely used for this purposes, for examplepath tracing

[LW93].

The algorithm integrates all the luminance arriving to a point on the surface of an object.

The light arriving at this point will then be reduced by a surf ace reectance function to

determine how much of it will go towards the camera. Path tracing simulates naturally

e�ects that have to be especi�cally added using other methods, like for example soft

shadows, color bleeding, motion blur, caustics, etc.

Another popular algorithm is Metropolis light transport [CE05]. Is a variant of the Monte

Carlo method Metropolis-Hastings. The algorithm constructs paths from the camera to

the light source using path tracing, then introduces slight modi�cations to the path. The
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advantage of this algorithm versus conventional path tracing is that when you �nd a path,

this algorithm explores nearby paths, thus �nding di�cult p aths that other algorithms

could easily miss. Metropolis light transport is a method that sometimes converges to

a solution of the rendering equation quicker thatn other algorithms, for example path

tracing.

Photon mapping is also a popular method for computing global illumination. As we have

described it in Subsection 4.2.2 we won't analyze it here.

9.3.2 Design

Figure 9.4: Monte Carlo class diagram.

Figure 9.5: Material class diagram.
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As we can see in Figure 9.4,MonteCarlo handles the task of integrating the incom-

ing light in the hemisphere of a hitpoint. Sampler provides the necessary samples for

MonteCarlo to perform its task.

In Figure 9.5 it can be seen that theMaterial class de�nes what the material properties

of an object will be. Note that the BRDF class can be used to compute the reectance

of the material.

9.3.3 The rendering equation

In 1986 James Kajiya introduced the rendering equation [Kaj86], that even today is the

basis of the majority of rendering engines. This is an intregral equation in which the

outgoing radiance at a certain point is the sum of all the emitted and reected radiance in

every direction (see Figure 9.3). This is supported by the energy conservation principle.

We now show the rendering equation, that describes the totalamount of light emitted

from a point x along a particular viewing direction, given a function for incoming light

and a BRDF:

L o(x; !; �; t ) = L e(x; !; �; t ) +
Z



f r (x; ! 0; !; �; t )L i (x; ! 0; �; t )cos(d! 0n)d! 0 (9.1)

Figure 9.6: Visual aid to understand the rendering equation.

Where � is a wavelength of light and t is time. L o(x; !; �; t ) is the total amount of

light with wavelenght � directed outwards along direction ! at time t from a position x.

L e(x; !; �; t ) is the emitted light (by the material), whereas L i (x; ! 0; �; t ) is the incoming

light reaching x from direction ! 0, and cos(d! 0n) represents the atenuation of incoming light

due to the incident angle.
R


 � � � d! 0 is the integral over a hemisphere of inward vectors.
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f r (x; ! 0; !; �; t ) is the BRDF, the proportion of light reected.

This equation has some limitations, it does not capture all of the aspects of light reection.

Some of them are phosphorescence, uorescence, interference and subsurface scattering.

There are countless alternatives to solve the integral of Equation 9.1, like we have seen in

Section 9.3.1. In this project we have used a brute-force approach based on Monte Carlo

integration as described in the following subsections.

9.3.4 Monte Carlo integration

We now proceed to show how Monte Carlo integration is performed mathematically as we

can see in [PH10, AFH+ 01].

Suppose we want to solve the integral
Rb

a f (x)dx. Given a uniform random variable X i 2

[a; b], the Monte Carlo method states that the estimated value for the estimator is

FN =
b� a

N

NX

i =1

f (X i ):

The estimator E [FN ] is equal to the integral as we can see next. Note that the PDF3

corresponding toX i has to equal 1=(b� a) becausep has to be a constant and integrated

to 1 for the domain [a; b]. Then we have

E[FN ] = E

"
b� a

N

NX

i =1

f (X i )

#

=
b� a

N

NX

i =1

E[f (X i )]

=
b� a

N

NX

i =1

f (x)p(x)dx

=
1
N

NX

i =1

f (x)dx

=
Z b

a
f (x)dx

The restriction of using uniform random variables can be generalized to any other distribu-

tion function. This is relevant because it will let us choosealternative sampling methods

to look for better convergence to the solution. If the randomvariable X i follows a random

3Probability density function.
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PDF p(x), then we can utilize the estimator

FN =
1
N

NX

i =1

f (X i )
p(X i )

to solve the integral. The only restriction of p(X i ) is that it cannot be equal to zero

jf (x) > 0j.

Extending the Monte Carlo estimator to additional dimensions is trivial, in 3D the samples

X i just have to be chosen with three coordinates from a tridimensional PDF. For example,

to solve Z x1

x0

Z y1

y0

Z z1

z0

f (x; y; z)dx

we simply will use samplesX i = ( x i ; yi ; zi ) from the cube de�ned by (x0; y0; z0) and

(x1; y1; z1). Then the constant value of the PDF p(x) will be

1
(x1 � x0)

1
(y1 � y0)

1
(z1 � z0)

and the estimator
(x1 � x0)(y1 � y0)(z1 � z0)

N

NX

i =1

f (X i ):

It is important to highlight that the number of samples N can be chosen arbitrarily, it will

be independent of the number of dimensions that we are working with. Mathematically,

this is one of the biggest advantages of the Monte Carlo method in rendering applica-

tions versus other numerical integration methods, where the number of samples required

augments exponentially with extra dimensions.

The convergence of the Monte Carlo method isO(
p

N ). Even not being specially faster

than other methods, this value is also dimension independent, which is a big advantage.

9.3.5 Monte Carlo sampling

When we talk about sampling to solve the integral that the rendering equation presents

with Monte Carlo, the PDF of the classical method is tranformed in a distribution of

tridimensional points over the surface of a imaginary hemisphere that surrounds the point

in which we want to calculate lighting. The type of sampling used is one of the most

important things we have to choose, it has a big impact in the generated solution and

therefore in the �nal aspect of the rendered image.

This samples will be used to create rays with origin in the point that we want to calculate
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(the center of the hemisphere) and direction set by the sample. This ray will interact with

the scene looking for geometry, imitating a ray of light, etc. like a \probe".

To generate the samples over the hemisphere, usually we use the polar coordinates (�; � )

that have to be mapped to 3D space usingp(pu ; pv ; pw). We now show how the mapping

is done (see Figure 9.7):

p(�; � ) = p(pu ; pv ; pw)

(x 2 [0; 1); y 2 [0; 1)) ! (� = 2 �x; � = cos� 1[(1 � y)1=(m+1) ])

p = sin � cos � u + sin � sin � v + cos � w

Figure 9.7: Visual representation of polar coordinates mapping.

Now we can generate the samples in one of two ways:

� Generating samples in a 2D square space and rejecting the ones that are not inside

the hemisphere disc. After one is accepted, we would just have to \lift" it up to the

third dimension using cosine modulation depending on the distance to the center.

� We could also generate the samples using polar coordinates and then transform them

to 3D cartesian coordinates after the fact. This could be compared to working with

latitudes and longitudes in the earth globe.

Depending on the PDF we can distinguish between the following types of sampling [Sam,

Jas12]:
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� Pseudorandom : Completely random sampling, it generates a lot of high frequency

noise in the results.

� Deterministic : It distributes the samples uniformly within the hemisphere. It

can yield good results with less samples, but it can generatevisible artifacts in the

results.

� Quasi Monte Carlo : It uses distributions with quasi-random numbers, i.e. that

mantaining a random seed are slightly modi�ed for obtaining a more uniform dis-

tribution. With this we can get \low discrepancy" sets. Exam ples of this sampling

method are: strati�ed sampling, Poisson discs, etc.

� Importance : It is a general technique used for estimating properties ofa certain

distribution, while only having samples generated from a di�erent distribution in-

stead of the distribution of interest. For example, if we had a BRDF that would

have a clear disposition toward a certain set of directions;we would sample with

more emphasis around those directions. This method clearlyimproves the quality

of the results [Law04].

� Adaptive : This is a special type of sampling, in which initially we do not know the

total number of samples and where the computation of the samples and evaluation

have to be alternated. We normally start with a uniform distr ibution in grid form.

Once evaluated, we look for discrepancies between neighboring samples. If several

close samples in the grid have very di�erent results, we �nd ourselves in a high

frequency zone of the integral. In this case we subdivide thegrid in a new level

and reevaluate the new samples but only apporting half of their initial weight to

the solution. This process is repeated until a maximum depthis reached. Outcome

depends on the scene, but it generally yields pretty good results.

We provide a comparison between the methods implemented in BDE, so that the reader

can see what kind of results can be expected from di�erent types of sampling (see Fig-

ure 9.10).

9.3.6 Brute force Monte Carlo

Once we now how the theory behind the Monte Carlo mehod works,we just need to

integrate it into BDE. We did that in the class MonteCarlo . We now will explain how

the Monte Carlo algorithm is implemented in our engine.

First we calculate the corresponding samples with theSampler class:
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s ta t i c Sampler sampler ;

sampler .compute( h i t p o i n t , normal , num samples ) ;

Once we have the samples, we need to check how they interact with the scene and compute

the contribution of each sample to the result (if they do not intersect with anything in the

scene they just contribute an ambient color):

for ( int i = 0 ; i < n samples ; i++) f

Ray ray = Ray ( h i t p o i n t , sample ) ;

i f ( r a y i n t e r s e c t s ( ) ) rgb = sample . compute contr ib ( ) ;

e lse rgb = ambient ;

sum rgb += rgb ;

g

sum rgb � = inv samp les ;

return sum rgb ;

To calculate the contribution if there are intersections, we check if the surfel emits light;

if it does it means that the ray that corresponds to the sampleis unoccluded and that

light reaches the surfel. We then compute the di�use and specular contributions with the

BRDF on that point.

If the surfel does not emit light, we have to use Monte Carlo again to see if from that

indirect bounce we could reach a light source. So we make a recursive call to the Monte

Carlo function that will repeat the process until a maximum depth. In Figure 9.8 we can

see how light can bounce in objects in the scene and reach our object indirectly.
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i f ( s u r f e l . emi ts ( ) ) f

rgb = brd f . d i f f u s e ( ) + brd f . specu la r ( ) ;

g e lse i f ( l e v e l < max depth ) f

MonteCarlo new mc = MonteCarlo ( ) ;

rgb = new mc . i n t e g r a t e ( s , ray , l e v e l +1);

g

Figure 9.8: Example of a ray reaching a light source with a single bounce.

9.4 Results

In Figure 9.9 we can see how as we increase the number of samples rendering times

increment exponetially. This performance test was run on a single thread of a Intel Core

i5-2557M CPU and 4 GB of 1333 MHz DDR3 RAM. The test was run at a 640x360

resolution on a scene with 33000 surfels.
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Figure 9.9: Graph that shows how performance varies depending on the number of
samples.

We also o�er several renders that showcase the kind of resultsthat our global illumination

approach can o�er:
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Figure 9.10: Our own version of the classic test scene \Cornell room" rendered with 100
samples. Comparison between deterministic, pseudorandomand QMC sampling

methods from left to right.

Figure 9.11: Monte Carlo with 700 deterministic samples. Render of a 33k surfel scene
created in Blender.
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Figure 9.12: Monte Carlo with 700 QMC samples. Render of a 33ksurfel scene created
in Blender.

Figure 9.13: Monte Carlo with 500 QMC samples. Render of a 500k surfel scene created
in Blender.
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Figure 9.14: Monte Carlo with 500 deterministic samples. Render of a 500k surfel scene
created in Blender.

Figure 9.15: Monte Carlo with 1000 random samples. Render ofa custom \Cornell
room" scene created in Blender.
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Figure 9.16: Monte Carlo with 500 QMC samples. Render of a custom \Cornell room"
scene created in Blender.

Figure 9.17: Hard shadows. Render of a 500k surfel scene created in Blender.
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Chapter 10

Conclusions and future lines of

work

10.1 Conclusions

The �rst conclusion that we have reached is the fact that all objectives that we laid out

for the project were met:

� Build a raytracer from scratch.

� Research how traditional global illumination techniques can be applied to point-

based rendering.

� How does using points as a primitive a�ect the classical rendering pipeline.

After having researched and dealt with the problems that have arised in the design and

implementation of a point-based rendering pipeline that includes physically-based illumi-

nation, several conclusions have been reached:

� The importance of an acceleration structure : The use of the k-d tree in our

case has been key, as we could see in the performance tests in Chapter 6. The render

times increase greatly when not using a k-d tree as the numberof surfels grow in the

scene. Instead when using a k-d tree they remain almost constant as you increase

the number of surfels.

� Rendering is a highly parallelizable workload : The use of multithreading

in our rendering algorithm reduces render times signi�cantly even just using two

threads, performance testing about this subject can be consulted in Chapter 8.

89
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� Constant model density : This is something that is really important when using

point clouds and trying to get realistic results. Models with non-constant density

present problems when trying to obtain a high quality render; such as apparent holes

in the objects or surfel overlapping. This problems can be overcome with a couple of

techniques (see section 8.5), but it is best to use a model with constant point density

if we want high quality results.

� Normal vectors : The surface normals of the surfels are one of the most important

aspects when trying to achieve a high quality render. The normals can even be used

as a measure of the quality of the renders, if the normals are not calculated correctly

or we input a bad set of normals for the model, the render quality will be bad. If

instead the normals are correct we will see good results. Ultimately normals play a

really important role in the rendering process.

� Real-time rendering of point clouds : As we have seen in testing, it is probably

possible to achieve rendering times that would be suitable for real-time rendering.

Using a k-d tree and only a CPU we achieved milisecond render times. If we would

employ a GPU instead of a CPU rendering times would be greatlyimproved even

if hardware is not yet optimized for point-based rendering. Real-time rendering

could only be achieved using the hard shadows technique, theMonte Carlo method

increases rendering times greatly in its current state.

� Multi-platform : The engine can run on Mac OS X, Windows or Linux.

10.2 Future lines of work

Several lines of work come to mind when thinking about expanding BDE. Some of them

are:

� OpenCL : As we have explained in the previous section, rendering is ahighly par-

allelizable workload. OpenCL would allow us to use the parallel power of GPUs

to accelerate the rendering process. This would lead to improvements in quality,

because we would be able to use more samples while not increasing rendering times

which would lead to higher quality images.

� OpenGL : We approached the fact that using a CPU we were able to obtainrender-

ing times that were suitable for real-time rendering. The next step would be using

OpenGL to accelerate the rendering times even more and display the results in real

time.
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� Web visualization of point clouds : Another possible line of work would be

porting BDE so that it could be run on a web browser. This could widen even more

the applications on the engine, visualizing point clouds directly on a browser would

make even more open to everyone the engine.

� Improving illumination with Photon Mapping : Because of the nature of Pho-

ton Mapping it would be a great match for BDE. This would yield a great improve-

ment in rendering quality.

� Integrating BDE in more 3D software : Implementing more plugins, i.e. for

Maya, 3DS Max, etc.

� Preparing BDE for commercial use .



10.2. Future lines of work 92



Bibliography

[AFH + 01] James Arvo, Marcos Fajardo, Pat Hanrahan, Henrik Wann Jensen, Don

Mitchell, Matt Pharr, and Peter Shirley. State of the art in m onte carlo

ray tracing for realistic image synthesis. SIGGRAPH, 2001. 74, 77

[AGP+ 04] Marc Alexa, Markus Gross, Mark Pauly, Hanspeter P�ster, Marc Stam-

minger, and Matthias Zwicker. Point-based computer graphics siggraph 2004

course notes.SIGGRAPH, 2004.

[AMHH08] Tomas Akenine-Moller, Eric Haines, and Naty Ho�man . Real-Time Render-

ing. ISBN 978-1-56-881424-7. AK Peters, third edition, 2008. 15

[Bec01] Kent Beck. Manifesto for agile software development. Agile Alliance, 2001. 7

[Caf98] R. E. Caisch. Monte carlo and quasi-monte carlo methods. Acta Numerica

7, 1998. 6

[CE05] David Cline and Parris Egbert. A practical introduct ion to metropolis light

transport. ACM Transactions on Graphics, 2005. 74

[Chr05] Per H. Christensen. Point-based approximate colorbleeding. Pixar Technical

Memo 08-01, 2005. 3

[Coc01] Alistair Cockburn. Agile Software Development. ISBN 978-0-20-169969-2.

Addison-Wesley Professional, �rst edition, 2001. 7

[DLS05] Tamal K. Dey, Gang Li, and Jian Sun. Normal estimation for point clouds:

A comparison study for a voronoi based method.Eurographics Symposium on

Point-Based Graphics, 2005. 51

[Fou12] Stichting Blender Foundation. Blender is the free open source 3d content

creation suite. http://www.blender.org/ , 2012. 3

93



Bibliography 94

[FvDFH12] James D. Foley, Andries van Dam, Steven K. Feiner,and John F. Hughes.

Computer Graphics: Principles and Practice. ISBN 978-0-20-184840-3.

Addison-Wesley Professional, third edition, 2012. 13

[Gla89] A. S. Glassner.An introduction to raytracing . Morgan Kau�man, third edi-

tion, 1989. 15

[GP07] Markus Gross and Hanspeter P�ster. Point-based Graphics. ISBN 978-0-12-

370604-1. Morgan Kaufmann Publishers, �rst edition, 2007. 4, 29, 30, 51,

52

[Jas12] Alberto Jaspe. T�ecnicas de iluminaci�on 3d basadas en el m�etodo de monte-

carlo, 2012. 13, 79

[Jen96] Henrik Wan Jensen. Global illumination using photon maps. Rendering Tech-

niques, 1996. 30

[Kaj86] James Kajiya. The rendering equation. SIGGRAPH, 1986. 76

[Law04] Jason Lawrence. E�cient brdf importance sampling using factored represen-

tation. SIGGRAPH, 2004. 80

[LBRF11] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A large-scale hierar-

chical multi-view rgb-d object dataset. IEEE International Conference on

Robotics and Automation (ICRA) , may 2011.

[LMR07] Lars Linsen, Karsten Muller, and Paul Rosenthal. Splat-based ray tracing of

point clouds. WSCG, 2007. 29

[LW93] Eric Lafortune and Yves Willems. Bidirectional path tracing. Proceedings of

Computer Graphics, 1993. 74

[MPBM03] Wojciech Matusik, Hanspeter P�ster, Matt Brand, a nd Leonard McMillan.

A data-driven reectance model. ACM Transactions on Graphics, 22(3):759{

769, jul 2003.

[NM99] Amenta N. and Bern M. Surface reconstruction by voronoi �ltering. Disc.

Comp. Geom., 1999. 51

[PFS04] Matt Pharr, Randima Fernando, and Tim Sweeney. GPU Gems 2: Pro-

gramming Techniques for High-Performance Graphics and General-Purpose

Computation. Addison-Wesley Professional, �rst edition, 2004. 3



Bibliography 95

[PH10] Matt Pharr and Greg Humphreys. Physically Based Rendering: From Theory

to Implementation. ISBN 978-0-12-375079-2. Morgan Kaufmann Publishers,

second edition, 2010. 5, 15, 17, 22, 41, 43, 58, 77

[Pix12] Pixar. Pixar's renderman. http://renderman.pixar.com/view/renderman ,

2012. 29

[Pra12] Stephen Prata.C++ Primer Plus . ISBN 978-0-321-77640-2. Addison-Wesley,

sixth edition, 2012.

[Sam] Advanced computer graphics: sampling. Computer Science Department Uni-

versity of Freiburg. 79

[Sam06] Hanan Samet.Foundations of Multidimensional and Metric Data Structures.

ISBN 978-0-12-369446-1. Morgan Kaufmann Publishers, sixth edition, 2006.

41

[Tor05] Linus Torvalds. Git. http://git-scm.com/ , 2005. 9

[ZPKG06] M. Zwicker, M. Pauly, O. Knoll, and M. Gross. Points hop3d.

http://graphics.ethz.ch/pointshop3d/ , 2006. 29


	Introduction
	BDE
	Motivation and context
	Objectives


	Planification and methodology
	Agile software development
	Agile manifesto
	Description
	Application


	CG basics
	Rendering
	Rendering process
	Models

	Illumination
	Transformations
	Surfels
	Sphere approach
	Disc approach

	Camera model
	Parameters
	Inner workings


	Structure
	Analysis
	State of the art
	Point-based rendering
	Global Illumination in point-based rendering

	Design

	I/O and Blender integration
	I/O
	Design
	Point cloud input formats
	XML config file
	Image output

	Blender integration
	Loading the plugin
	Using the plugin
	Normal visualization plugin
	Point cloud visualization plugin


	k-d tree
	Design
	Tree representation
	Tree construction
	Tree traversal
	Performance tests

	Normal estimation
	State of the art
	MLS
	Algorithm: design and implementation

	Ray tracing
	Introduction
	Design
	Ray-scene intersection
	Shadows
	Surfel overlapping
	Supersampling anti-aliasing
	Performance tests

	Global illumination
	Shading
	Hard shadows
	Diffuse reflection
	Specular reflection

	Monte Carlo
	State of the art
	Design
	The rendering equation
	Monte Carlo integration
	Monte Carlo sampling
	Brute force Monte Carlo

	Results


