
Hardware-Independent Clipmapping
Antonio Seoane

antonio.seoane@videalab.udc.es
Javier Taibo

jtaibo@udc.es
Luis Hernández

lhernandez@udc.es

Rubén López
ryu@videalab.udc.es

Alberto Jaspe
jaspe@udc.es

VideaLAB
School of Civil Engineering - University of A Coruña, Spain

Campus de Elviña 15071 - Spain

ABSTRACT

We present a technique for efficient management of large textures and its real-time application to geometric models. The
proposed technique is inspired by the clipmap [12] idea, that caches in video memory a subset of the texture mipmap pyramid.
Based on this concept, we define some structures and a different management allowing its implementation on a personal
computer without specific graphics hardware. Finally, we present the results of the application in a terrain visualization system,
using several simultaneous textures with a detail up to 0.25 meters per texel, covering a 60,000 km2 area.

Keywords
Terrain visualization, multiresolution visualization, large data set visualization, level-of-detail techniques, texture
mapping, clipmap, mipmap, texture caching.

1 INTRODUCTION
Applying textures to digital terrain models is the classi-
cal solution to simulate the missing geometry details.
When we want to apply a large amount of texture to the
terrain surface, the storage problem arises. Although
both the system memory and the video memory are ex-
tremely fast, there is limited storage capacity. Therefore
the use of a paging technique that allows an efficient
management of the texture data in order to visualize the
terrain with a very high quality is essential.

In contrast to the abundance of terrain geometry ma-
nagement algorithms, there is little work focused on
handling the texture. Moreover, most of the systems
allowing the visualization of digital terrain models es-
tablish a strong dependency between both geometry and
texture data bases.

Usually, texture tiles are bound to the geometry with
a pre-established mapping. This makes it difficult to
modify or to replace the geometry or texture data in a
transparent way, without rebuilding the database.

One of the best and most used approaches that al-
lows the handling of big textures is the clipmap [12].
This technique separates the handling of the texture
and the geometry, allowing independence between both
databases. The main problem of this technique is the
requirement of specific hardware.

We propose a new technique that allows the handling
of a large amount of texture without any requirement
of specific hardware. Only OpenGL or Direct3D fixed
function pipeline is required to implement this tech-
nique. It uses a two level cache composed of a texture
stack stored in the video memory as the first level and
a set of buffers stored in RAM as the second level. The
contents of both levels are updated depending on cam-
era movement.

This technique is inspired by the clipmap idea. It is
also based on the caching in video memory of a huge
mipmap pyramid [13]. Nevertheless, its structure, the
management of the video memory and the way the tex-
ture is applied are different, which allows its implemen-
tation in a personal computer using a graphics API like
OpenGL [11].

Our texturing technique provides the following ad-
vantages:

• It can be implemented using an API like OpenGL
without special necessities in the graphics hard-
ware.

• It keeps the independence between geometry and
texture databases.

Full Papers 177 ISBN 978-80-86943-98-5

• Texture coordinates can be computed in the GPU
(although it is not necessary), avoiding their trans-
ference to the graphics system. This allows modi-
fication of the geometry in real time, while keeping
the right texture mapping without recomputing the
texture coordinates.

• Texture aliasing is avoided using trilinear filtering
hardware capabilities.

• It allows the visualization of high resolution textures
with the possibility of including higher resolution in-
sets.

• It allows the use of several independent large tex-
tures which can be combined to show different in-
formation types simultaneously on the terrain.

2 PREVIOUS WORK
Historically, the strategies for the terrain texturing prob-
lem have been based on paging systems. With these
kind of techniques it’s usual to solve the high texture
volume problem applying high resolution information
to the terrain regions closer to the camera, and less de-
tail to those which are further away. Thus we only need
to store in video memory the higher resolution data for
a small portion of the terrain. Moreover, due to the
perspective, the further we are from a terrain area, the
fewer pixels used on the screen, and therefore, the fewer
texels needed for accurate representation.

Rabinovich [9] proposed in his visualization system
the use of a single texture covering the whole terrain,
with hardware mipmap. This technique has scalabil-
ity drawbacks, as the maximum texture size allowed by
graphics hardware is very limited, and greatly exceeded
by the resolution needed to represent large terrain sur-
faces with an acceptable visual quality.

A solution to the previous limitation is the
clipmap [12], which caches a subset of a mipmap pyra-
mid. Terrain is mapped at every point with the finest
available level of detail. As the camera moves, the sys-
tem updates the pyramid cache with the information
corresponding to the new area. The clipmap, neverthe-
less, needs special hardware for its implementation.

Another solution is MPGrid [6], that uses several
pyramids instead of only one. Each pyramid is a
mipmap that should fit completely in memory. If the
geometry is not aligned with the texture pyramids, it is
necessary to either clip the triangles in real-time or to
use a special hardware.

Döllner [5] proposes to store a tree containing a set
of texture patches that belong to one texture pyramid.
Each texture patch is bound to a geometry patch of an-
other multiresolution model, which must cover it com-
pletely. This introduces a dependency that forces the
adaptation of texture quality to the loaded geometry
level and vice versa.

Blow [2] developed a similar system, in which the
tree is a quadtree. For every triangle, the more adequate
texture is sought in the quadtree. To achieve efficiency
in this algorithm in spite of doing the above mentioned
computation once for every triangle, he introduces cer-
tain restrictions in the way of doing the clipping and the
shape of the triangles. These restrictions create, also in
this case, a strong dependency between the geometry
and texture systems.

3 STRUCTURE OVERVIEW
The system proposed in this paper is based in the
clipmap concept described by Tanner, caching a sub-
set of the texture pyramid in video memory (Figure 1).
We introduce a different memory structure of the algo-
rithm, described in this section.

Texture information is structured in three storage lev-
els: disk, system memory (RAM) and video memory
(VRAM).

Figure 1: Virtual texture.

3.1 Disk
Texture is completely stored on disk using a mipmap
pyramidal scheme. This texture is called virtual tex-
ture. The highest detail level of this pyramid is formed
by 2l−1× 2l−1 texels, where l is the number of levels
(Figure 1). Levels are numbered from 0 and up, be-
ing 2i× 2i the size for level i. Higher levels can be in-
complete, allowing incrementation of detail for special
interest areas (insets).

Every level is stored on disk being divided in square
fragments of t× t texels, called tiles, except those lev-
els which dimension is smaller than the tile. Tile size
is chosen so as to maximize the speed of disk to RAM
transfer, while avoiding fragmentation. Tiles are ad-
dressed using three coordinates: x (column), y (row)
and z (level).

The disk database is fully compatible with the
OpenGL Performer [10] clipmap format.

The amount of disk space used by the texture is then
estimated with the equation:

D� 22l−2 · 4
3
·b bytes

where b is the texture color depth measured in bytes per
texel.

Full Papers 178 ISBN 978-80-86943-98-5

3.2 System memory
Disk stored tiles are cached in a set of RAM buffers,
one buffer per tile.

Cache requests address the tiles by column, row and
level. Tile loading is done asychronously, and an LRU
algorithm is used to choose the buffer where the tile is
to be stored.

Requests are prioritized on a level basis, the coarser
levels being those with higher priority. This facilitates
having information of the zone of interest as quickly as
possible, since lower level tiles cover larger areas. The
detail is then being progressively and orderly refined as
higher level tiles become available.

RAM usage is determined by the number of buffers
(n) assigned to the cache, being calculated as follows:

R = n · t2 ·b bytes

3.3 Video memory
A subset of the virtual texture pyramid stored in disk is
stored in video memory (Figure 1).

Clip size (c) determines the maximum size stored in
VRAM for each level of the virtual texture. We will
choose a base level, this being the level of the pyra-
mid with a size equal to the clip size. This base level
and lower ones are stored entirely and permanently in
VRAM. For each level higher than the base level, a re-
gion of c×c texels around the center of detail is cached.
The base level (lb) is calculated as follows:

lb = log2 c

Information placed in VRAM is organized in a graph-
ics system texture stack, being those textures indepen-
dent of each other. The stack is composed by l− lb tex-
tures of c× c texels each. Texture ti caches level lb + i
in the pyramid (Figure 2).

Figure 2: Texture stack.

In order to allow the graphic system to perform a tri-
linear filtering to avoid aliasing, mipmap levels for ev-
ery texture are needed. Let ti j be the mipmap level j of
the texture i in the stack (Figure 3).

Texture t0 has all its mipmap levels, corresponding
with the base level and coarser levels. For the rest of
the textures, level ti j caches level lb + i− j of the virtual
texture. In these textures, the number of mipmap levels
can be limited to save bandwidth.

We can visualize this stack as a set of rings represent-
ing different resolutions (Figure 4). In the Figure 5 we

Figure 3: Texture stack. Mipmap levels correspondence.

can see the application of different levels of detail to the
terrain, represented by a color code.

Figure 4: Rings of detail.

Figure 5: Virtual textures applied to the terrain. Levels
of detail are shown using a color code.

To compute the usage of video memory let us supose
that m mipmap levels are used for the textures corre-

Full Papers 179 ISBN 978-80-86943-98-5

sponding to those levels of the disk pyramid above the
base level. It is computed as

V =

(

(l− lb−1) ·
m

∑
i=0

(c
2i

)2
+

lb+1

∑
i=0

22i

)

·b

4 UPDATE
The data stored on the texture stack, as described in the
previous section, corresponds to a zone of the virtual
texture around the center of detail. As the center of
detail position is moved, it is necessary to update the
contents of the stack and other related structures.

Center of detail. For every frame, the application
must place the center of detail in the location where
higher quality is desired. Several strategies can be used,
usually computing it as a function of the camera posi-
tion and orientation.

The simplest approach is to place the center of detail
in the vertical projection of the camera location over the
ground. More adequate approaches place the center of
detail on a point of the visible geometry close to the
camera.

Texture stack update. Each texture of the VRAM
texture stack is updated independently, caching a level
of the virtual texture. VRAM textures are considered
to be divided in square patches, called subtiles. The
subtile is the texture updating unit. The subtile size (s)
must be a divisor of the clip size and the tile size, with

s = 2i, t = 2 j, c = 2k, with i≤ j e i < k

After the center of detail is moved, some subtiles will
retain useful data, but other tiles must be updated. Each
texture has a state matrix that keeps the state of its sub-
tiles. Subtiles that must be loaded with new data are
marked in the state matrix as invalid.

Processing the textures of the stack in ascending or-
der, each invalid subtile is loaded from the tile that con-
tains the information it needs at that moment. If the
requested tile is in the cache in RAM, the subtile is up-
dated. Otherwise, the subtile remains invalid, waiting
for the needed tile to be loaded from disk. In case of
incomplete levels, subtiles in the areas where there is
no information will never be updated.

To keep the coherence of data, the described sub-
tile update implies updating the related area in every
mipmap level of the texture. Update of levels ti j, where
j > 0, can be made from lower textures in the stack
because this data is replicated in several textures (Fig-
ures 2 and 3). In this way data can be transferred inside
VRAM, faster than loading it from RAM.

There is a toroidal structure of the subtiles in VRAM
due to efficiency reasons. Considering the virtual tex-
ture levels divided in subtiles, subtile (xa,ya) from level

i on disk is placed in position (xb,yb) inside the texture
in VRAM, where

(xb,yb) = (xa mod K,ya mod K) and K =
2i

s

Load control. The speed of the center of detail af-
fects the amount of texture that must be updated. The
higher detail textures cover a smaller area than the
lesser detail ones and they must be updated more fre-
quently. The time required to update the texture stack
in VRAM can cause the time available for rendering the
frame to be overrun. To avoid this potential problem, it
is necessary to restrict the amount of time available for
updating the texture stack.

The stack update is made from the coarser texture in
ascending order. A texture from the stack must be com-
pletely updated before the update of the next texture
begins. No matter how quickly the center of detail is
moving, there will always be a set of textures fully up-
dated (at least the base level).

Computing the subtile size, it is important to find a
tradeoff between an adequate load control and a good
transfer rate. The less the subtile size is, the higher
the accuracy to measure the update time will be. Even
though the subtile update time is strongly dependent on
hardware used, usually the smaller sizes have a very
poor efficiency.

Concentric rings updating. As the textures in the
stack are not always completely updated, it is neces-
sary to decide when a texture is appliable. A simple
approach is to discard a texture from the stack until it
is completely updated. The problem here is that ev-
ery time the center of detail is moved the distance of
a subtile, it will be invalidated until being completely
updated again. This problem is reduced by applying
the texture when a partial area of the full texture area is
loaded. This subarea is called texture coverage.

We update the subtiles in concentric rings, innermost
to outermost, so the coverage grows as the subtile rings
are updated (Figure 6). This way the texture is use-
ful from the moment it begins to have valid subtiles.
Beginning from the center, the highest interest zone is
available sooner. Also, the center subtiles are the ones
with higher life expectancy.

5 RENDERING
To use the described technique in a real application, we
have to do the following tasks

• Apply the texture

• Compute the texture coordinates

• Draw the geometry

There are two possible approaches to doing these
tasks:

Full Papers 180 ISBN 978-80-86943-98-5

Figure 6: Circular update.

1. For each geometry set, apply the finest available tex-
ture covering this region.

2. Apply each texture from the stack, asking for its
coverage and drawing the geometry covered by this
level but not for the finer ones.

For texture mapping the geometry, we need the vir-
tual texture coordinates bound to each vertex. Texture
coordinate computation is made in exactly the same
way, no matter which one of the two approaches we
choose.

Virtual texture coordinates are converted to coordi-
nates of the texture selected from the stack. Texture
coordinates are scaled because each texture from the
stack covers half the virtual space of the previous one.
Thus, the scale factor for the level i from the stack is
computed as S = 2i. We only need the texture matrix
of the fixed function pipeline to automatically scale the
texture coordinates. Once the coordinates are scaled,
the toroidal organization assures that repeated applica-
tion of the texture [3] will be correctly mapped over the
covered surface (Figure 7).

Figure 7: Mapping a texture from the stack.

5.1 Automatic generation of texture coor-
dinates.

In terrain visualization, the usual way of mapping the
geometry is to have the texture coordinates precalcu-
lated.

The computation of virtual texture coordinates can
be done by the texturing system. The only information
the texturing system needs to know about the geometry

database is the coordinate system used. There can even
be different projection systems for texture and geome-
try.

The real-time computation of these texture coordi-
nates gives us some advantages, one of them being the
ability to dinamically modify the geometry while keep-
ing the mapping right.

The programmable capabilities of new graphics
pipelines allows us to move these computations from
CPU to GPU. This way, we achieve a significant re-
duction of bandwidth consumption between RAM and
VRAM, and avoid the need of VRAM space to store
texture coordinates. We can generate the virtual texture
coordinates and scale them using a vertex program.

5.2 Multitexturing
An interesting feature of our technique is that several
virtual textures can be managed simultaneously. Each
one is bound to a texture stage in the graphics system.
The maximum number of virtual textures is determined
by the graphics hardware used.

In terrain visualization, we can check different types
of information over the ground by mapping several
overlapping textures (Figure 8).

Figure 8: Virtual textures combination.

6 EXAMPLE OF APPLICATION:
SANTI

An OpenGL [11] implementation of the technique de-
scribed above has been applied in the last version of
SANTI, a terrain visualization system [8] (Figure 9).
SANTI is an application that was developed to display
a very large area of Spain as part of a permanent exhi-
bition from 1999 on. It was initially implemented on
an SGI Infinite Reality architecture using clipmapping
for terrain texture management. Currently it runs on a
common personal computer.

This application combines several virtual textures si-
multaneously, using a vertex program to dynamically
compute the texture coordinates.

The system uses an De Boer’s [4] inspired algorithm
to render the geometry dividing the total mesh into
equally sized patches that can be drawn using differ-
ent levels of detail. There is no constraint on the way
the patches are generated. The texture level of detail

Full Papers 181 ISBN 978-80-86943-98-5

is calculated on a block basis, and it has no relation at
all with the geometry level of detail. Distant patches
are considered as a block in themselves, while close
patches are split considering every new subpatch as a
block for texturing purposes. Using this approach, the
geometry granularity is increased near the camera, to
display higher textural detail.

Figure 9: Real-time terrain visualization (SANTI).

This system has been successfully used to visualize
real cases of digital terrain models covering more than
60,000 km2. The most detailed texture used to map this
surface has a virtual size of 220×220 texels, composing
a pyramid with 21 levels of detail. In this pyramid, lev-
els 0 to 16 are generated for the full geographical area,
allowing full coverage of the terrain with a 5 meters per
texel detail, while for special interest areas levels 17 to
20 are also generated to reach a texture detail of up to
0.25 meters per texel (Figure 10).

Figure 10: View of a 0.25 meters per texel area.

Texure is fragmented in tiles, each of them of 512×
512 texels. Clip size measures 2048× 2048 texels and
the subtile size is 128×128 texels.

The application maintains a steady 75 fps display rate
over all the terrain using a personal computer with a
regular hardware configuration.

At present, authors are preparing a new 5 terabytes
database with 21 full levels of detail that will allow their
users to visualize the above mentioned 60,000 Km2 ter-
rain with a continuous 0.25 meters per texel resolution.

7 RESULTS AND DISCUSSION
The system has been tested with a real data set. These
tests were done in a low end personal computer with
the following features: Intel Pentium 4 2.8 GHz with
512 MB DDR RAM, GeForce 4 Ti4800SE with 128
MB, AGP 8x, SATA disk 7200 rpm with an approxi-
mate bandwidth of 53 MB/s.

The rendered data set includes two combined vir-
tual textures of Galicia (northwest of Spain), simulta-
neously showing satellite image and a road map (Figure
8) for a 250×250 km area. The resolution of the satel-
lite image is 5 meters per texel over all the area, with
one aerial image inset of 0.5 meters per texel, covering
a 32× 32 km area and other of 0.25 meters per texel,
covering a 2.5× 2.5 km (21 levels). The resolution of
the road map image is 16 meters per texel (15 levels).
These images are mapped over a regular 200× 200 m
cell sized terrain mesh.

Both virtual textures have a clip size of 1024 texels,
a subtile size of 128 texels, a color depth of 24 bits per
texel. There is a maximum allowed update time of 1 ms
per frame for each virtual texture.

The test was a flight over the insets with 0.5 and 0.25
resolution. The speed of flight was 250 meters/s.

Figure 11: Test results.

The Figure 11 shows a graph for a 4 seconds interval.
There we can compare the frame rate with the num-
ber of subtile and tile updates, as well as the quality
available for both textures. The quality of a texture is
measured as the percentage of updating of the texture
stack.

As seen in Table1, the average quality of the virtual
textures is never under 95%. The update process has
little influence on the frame rate, keeping it always over
75 fps.

The update of the texture stack uses an average band-
width of 7.25 MB/s, approximately 55.29 KB/frame,
while the update of the RAM cache needs a transfer rate
of 17.4 MB/s, being 32.84% of disk total bandwidth.

Full Papers 182 ISBN 978-80-86943-98-5

Globals Min. Max. Avg. Std. dev.
Frame rate (frames/s) 91.65 152.05 128.54 11.66
Subtile load (subtiles/frame) 0 14 1.17 2.32
Tile load (tiles/frame) 0 2 0.20 0.51
Tile load latency (ms) 0.96 126.15 15.83 17.62
Terrain texture
Quality (%) 86.93 100.00 96.00 4.35
Subtile load (subtiles/frame) 0 7 1.13 2.19
Tile load (tiles/sec) 0 2 0.19 0.50
Road map texture
Quality (%) 97.50 100.00 99.93 0.39
Subtile load (subtiles/frame) 0 7 0.05 2.32
Tile load (tiles/sec) 0 1 0.01 0.51

Table 1: Test statistics.

These results prove that our technique allows the
management of multiple virtual textures with excep-
tional performance.

8 SUMMARY AND FUTURE WORK
We introduce a new technique for managing very large
textures through a paging system. It keeps the tex-
ture and geometry databases independent of each other
and it can be implemented on personal computers using
standard graphic API’s, like OpenGL, without the need
of special hardware.

This technique has been applied on a real case dis-
playing a 60,000 Km2 terrain texture with a detail of up
to 0.25 meters per texel with a steady 75 fps frame rate.

The dynamic, procedural generation of the texture is
a research line that is currently open. This could be
used for rendering vector data such as GIS information
over a three-dimensional geometry, without the need of
keeping the texture stored on disk.

Another line of research is to try different alternatives
for real time texture decompression [7] [1] in order to
reduce the bandwidth needed to transmit those textures
through a network for LAN or Internet applications.

REFERENCES
[1] María José Abasolo and Francisco J. Perales

López. Wavelet analysis for a new multiresolution
model for large-scale textured terrains. WSCG
2003, 2003.

[2] J. Blow. Terrain rendering at high levels of detail.
In Proceedings of the Game Developers Confer-
ence, 2000.

[3] Tom McReynolds David Blythe, Brad Grantham
and Scott Nelson. Advanced graphics program-
ming techniques using opengl. ACM SIGGRAPH
1998 Course #17 Notes, July 1998.

[4] Willem H. de Boer. Fast terrain rendering using
geometrical mipmapping. 2000. Available in
http://www.flipcode.com/tutorials/geomipmaps.pdf.

[5] Jürgen Döllner, Konstantin Baumman, and Klaus
Hinrichs. Texturing techniques for terrain visual-
ization. In VIS ’00: Proceedings of the conference
on Visualization ’00, pages 227–234. IEEE Com-
puter Society Press, 2000.

[6] T. Hüttner. High resolution textures. Visualiza-
tion’98 - Late Breaking Hot Topics Papers, pages
13–17, November 1998.

[7] Young-Su Kwon, In-Cheol Park, and Chong-Min
Kyung. Pyramid texture compression and decom-
pression using interpolative vector quantization.
In ICIP, 2000.

[8] L.Hernández, J.Taibo, and A.Seoane. Una apli-
cación para la navegación en tiempo real sobre
grandes modelos topográficos. In IX Congreso Es-
pañol de Informática Gráfica, CEIG 1999., 1999.

[9] Boris Rabinovich and Craig Gotsman. Visualiza-
tion of large terrains in resource-limited comput-
ing environments. In VIS ’97: Proceedings of
the 8th conference on Visualization ’97, pages 95–
102. IEEE Computer Society Press, 1997.

[10] John Rohlf and James Helman. Iris performer: a
high performance multiprocessing toolkit for real-
time 3d graphics. In SIGGRAPH ’94: Proceed-
ings of the 21st annual conference on Computer
graphics and interactive techniques, pages 381–
394. ACM Press, 1994.

[11] Mark Segal and Kurt Akeley. The OpenGL
Graphics System: A Specification (Version 1.2.1).
Editor (v1.1): Chris Frazier, Editor (v1.2): Jon
Leech, March 1998. http://www.opengl.org/.

[12] Christopher C. Tanner, Christopher J. Migdal, and
Michael T. Jones. The clipmap: a virtual mipmap.
In Proceedings of the 25th annual conference on
Computer graphics and interactive techniques,
pages 151–158. ACM Press, 1998.

[13] Lance Williams. Pyramidal parametrics. In SIG-
GRAPH ’83: Proceedings of the 10th annual
conference on Computer graphics and interactive
techniques, pages 1–11. ACM Press, 1983.

Full Papers 183 ISBN 978-80-86943-98-5

Full Papers 184 ISBN 978-80-86943-98-5

	!WSCG2007_Full_Proceedings_Final-all_2.pdf
	!WSCG2007_Full_Proceedings_Numbered.pdf
	!Full-A.pdf
	H31-full.pdf
	H31-full.pdf
	1.INTRODUCTION
	2.THE PROBLEM OF VIRTUAL WORLDS EXPLORATION
	3.HEURISTIC SEARCH BASED VIRTUAL CAMERA'S MOVEMENT AROUND A SCENE
	4.PRINCIPLES OF GOAL-BASED CAMERA MOVEMENT
	5.IMPLEMENTATION OF EXPLORATION TECHNIQUES AND RESULTS
	6.CONCLUSION AND FUTURE WORK

	!Full-F.pdf
	E43-full.pdf
	E43-full.pdf
	1. INTRODUCTION
	2. EXPONENTIAL B-SPLINES

	!Full-L.pdf
	A19-full.pdf
	INTRODUCTION
	BACKGROUND
	Related Work
	Information-Theoretic Measures
	Information-Theoretic Viewpoint Selection Measures

	SIMPLIFICATION ERROR METRIC BASED ON VIEWPOINT ENTROPY
	SIMPLIFICATION ALGORITHM
	Edge Collapse Error
	Updating Projected Areas

	RESULTS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

	!Full-N.pdf
	H07-full.pdf
	KeyWord pencil drawing, line integral convolution, image s
	1. Introduction
	2. Related Works
	3. LIC Pencil Filter
	4. Enhanced Region-based LIC Pencil Filter
	5. Experiment results
	6. Conclusion
	7. Acknowledgements
	8. References

	!Full-M.pdf
	A41-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. RAY-WAVES INTERSECTIONS
	3. LIGHT-WATER INTERACTIONS AND COMPLEX PHENOMENA
	4.1.1 Position
	4.1.2 Radiance

	5. RESULTS
	6. CONCLUSION
	7. REFERENCES

	TEMP.pdf
	!Full-A.pdf
	H31-full.pdf
	H31-full.pdf
	1.INTRODUCTION
	2.THE PROBLEM OF VIRTUAL WORLDS EXPLORATION
	3.HEURISTIC SEARCH BASED VIRTUAL CAMERA'S MOVEMENT AROUND A SCENE
	4.PRINCIPLES OF GOAL-BASED CAMERA MOVEMENT
	5.IMPLEMENTATION OF EXPLORATION TECHNIQUES AND RESULTS
	6.CONCLUSION AND FUTURE WORK

	!Full-F.pdf
	E43-full.pdf
	E43-full.pdf
	1. INTRODUCTION
	2. EXPONENTIAL B-SPLINES

	!Full-L.pdf
	A19-full.pdf
	INTRODUCTION
	BACKGROUND
	Related Work
	Information-Theoretic Measures
	Information-Theoretic Viewpoint Selection Measures

	SIMPLIFICATION ERROR METRIC BASED ON VIEWPOINT ENTROPY
	SIMPLIFICATION ALGORITHM
	Edge Collapse Error
	Updating Projected Areas

	RESULTS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

	!Full-N.pdf
	H07-full.pdf
	KeyWord pencil drawing, line integral convolution, image s
	1. Introduction
	2. Related Works
	3. LIC Pencil Filter
	4. Enhanced Region-based LIC Pencil Filter
	5. Experiment results
	6. Conclusion
	7. Acknowledgements
	8. References

	!Full-M.pdf
	A41-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. RAY-WAVES INTERSECTIONS
	3. LIGHT-WATER INTERACTIONS AND COMPLEX PHENOMENA
	4.1.1 Position
	4.1.2 Radiance

	5. RESULTS
	6. CONCLUSION
	7. REFERENCES

	G03-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. SIFT OVERVIEW
	4. GPU-IMPLEMENTATION
	5. CONCLUSION
	6. References

	!WSCG2007_Full_Proceedings_Numbered_NEW.pdf
	!Full-A.pdf
	H31-full.pdf
	H31-full.pdf
	1.INTRODUCTION
	2.THE PROBLEM OF VIRTUAL WORLDS EXPLORATION
	3.HEURISTIC SEARCH BASED VIRTUAL CAMERA'S MOVEMENT AROUND A SCENE
	4.PRINCIPLES OF GOAL-BASED CAMERA MOVEMENT
	5.IMPLEMENTATION OF EXPLORATION TECHNIQUES AND RESULTS
	6.CONCLUSION AND FUTURE WORK

	!Full-F.pdf
	E43-full.pdf
	E43-full.pdf
	1. INTRODUCTION
	2. EXPONENTIAL B-SPLINES

	!Full-L.pdf
	A19-full.pdf
	INTRODUCTION
	BACKGROUND
	Related Work
	Information-Theoretic Measures
	Information-Theoretic Viewpoint Selection Measures

	SIMPLIFICATION ERROR METRIC BASED ON VIEWPOINT ENTROPY
	SIMPLIFICATION ALGORITHM
	Edge Collapse Error
	Updating Projected Areas

	RESULTS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

	!Full-N.pdf
	H07-full.pdf
	KeyWord pencil drawing, line integral convolution, image s
	1. Introduction
	2. Related Works
	3. LIC Pencil Filter
	4. Enhanced Region-based LIC Pencil Filter
	5. Experiment results
	6. Conclusion
	7. Acknowledgements
	8. References

	!Full-M.pdf
	A41-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. RAY-WAVES INTERSECTIONS
	3. LIGHT-WATER INTERACTIONS AND COMPLEX PHENOMENA
	4.1.1 Position
	4.1.2 Radiance

	5. RESULTS
	6. CONCLUSION
	7. REFERENCES

	G03-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. SIFT OVERVIEW
	4. GPU-IMPLEMENTATION
	5. CONCLUSION
	6. References

	!WSCG2007_Full_Proceedings_Final-All-2.pdf
	!WSCG2007_Full_Proceedings_Numbered.pdf
	!Full-A.pdf
	H31-full.pdf
	H31-full.pdf
	1.INTRODUCTION
	2.THE PROBLEM OF VIRTUAL WORLDS EXPLORATION
	3.HEURISTIC SEARCH BASED VIRTUAL CAMERA'S MOVEMENT AROUND A SCENE
	4.PRINCIPLES OF GOAL-BASED CAMERA MOVEMENT
	5.IMPLEMENTATION OF EXPLORATION TECHNIQUES AND RESULTS
	6.CONCLUSION AND FUTURE WORK

	!Full-F.pdf
	E43-full.pdf
	E43-full.pdf
	1. INTRODUCTION
	2. EXPONENTIAL B-SPLINES

	!Full-L.pdf
	A19-full.pdf
	INTRODUCTION
	BACKGROUND
	Related Work
	Information-Theoretic Measures
	Information-Theoretic Viewpoint Selection Measures

	SIMPLIFICATION ERROR METRIC BASED ON VIEWPOINT ENTROPY
	SIMPLIFICATION ALGORITHM
	Edge Collapse Error
	Updating Projected Areas

	RESULTS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

	!Full-N.pdf
	H07-full.pdf
	KeyWord pencil drawing, line integral convolution, image s
	1. Introduction
	2. Related Works
	3. LIC Pencil Filter
	4. Enhanced Region-based LIC Pencil Filter
	5. Experiment results
	6. Conclusion
	7. Acknowledgements
	8. References

	!Full-M.pdf
	A41-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. RAY-WAVES INTERSECTIONS
	3. LIGHT-WATER INTERACTIONS AND COMPLEX PHENOMENA
	4.1.1 Position
	4.1.2 Radiance

	5. RESULTS
	6. CONCLUSION
	7. REFERENCES

	TEMP.pdf
	!Full-A.pdf
	H31-full.pdf
	H31-full.pdf
	1.INTRODUCTION
	2.THE PROBLEM OF VIRTUAL WORLDS EXPLORATION
	3.HEURISTIC SEARCH BASED VIRTUAL CAMERA'S MOVEMENT AROUND A SCENE
	4.PRINCIPLES OF GOAL-BASED CAMERA MOVEMENT
	5.IMPLEMENTATION OF EXPLORATION TECHNIQUES AND RESULTS
	6.CONCLUSION AND FUTURE WORK

	!Full-F.pdf
	E43-full.pdf
	E43-full.pdf
	1. INTRODUCTION
	2. EXPONENTIAL B-SPLINES

	!Full-L.pdf
	A19-full.pdf
	INTRODUCTION
	BACKGROUND
	Related Work
	Information-Theoretic Measures
	Information-Theoretic Viewpoint Selection Measures

	SIMPLIFICATION ERROR METRIC BASED ON VIEWPOINT ENTROPY
	SIMPLIFICATION ALGORITHM
	Edge Collapse Error
	Updating Projected Areas

	RESULTS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

	!Full-N.pdf
	H07-full.pdf
	KeyWord pencil drawing, line integral convolution, image s
	1. Introduction
	2. Related Works
	3. LIC Pencil Filter
	4. Enhanced Region-based LIC Pencil Filter
	5. Experiment results
	6. Conclusion
	7. Acknowledgements
	8. References

	!Full-M.pdf
	A41-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. RAY-WAVES INTERSECTIONS
	3. LIGHT-WATER INTERACTIONS AND COMPLEX PHENOMENA
	4.1.1 Position
	4.1.2 Radiance

	5. RESULTS
	6. CONCLUSION
	7. REFERENCES

	G03-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. SIFT OVERVIEW
	4. GPU-IMPLEMENTATION
	5. CONCLUSION
	6. References

	!WSCG2007_Full_Proceedings_Numbered_NEW.pdf
	!Full-A.pdf
	H31-full.pdf
	H31-full.pdf
	1.INTRODUCTION
	2.THE PROBLEM OF VIRTUAL WORLDS EXPLORATION
	3.HEURISTIC SEARCH BASED VIRTUAL CAMERA'S MOVEMENT AROUND A SCENE
	4.PRINCIPLES OF GOAL-BASED CAMERA MOVEMENT
	5.IMPLEMENTATION OF EXPLORATION TECHNIQUES AND RESULTS
	6.CONCLUSION AND FUTURE WORK

	!Full-F.pdf
	E43-full.pdf
	E43-full.pdf
	1. INTRODUCTION
	2. EXPONENTIAL B-SPLINES

	!Full-L.pdf
	A19-full.pdf

	!Full-N.pdf
	H07-full.pdf

	!Full-M.pdf
	A41-full.pdf

	G03-full.pdf

