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Abstract  

Artificial Neural Network (ANN) is widely used in pattern 
recognition related area. In some case, the computational load 
is very heavy, in other case, real time process is required. So 
there is a need to apply a parallel algorithm on it, and usually 
the computation for ANN is inherently parallel. In this paper, 
graphic hardware is used to speed up the computation of ANN. 
In recent years, graphic processing unit (GPU) grows faster 
than CPU. Graphic hardware venders provide 
programmability on GPU. In this paper, application of 
commodity available GPU for two kinds of ANN models was 
explored. One is the self-organizing maps (SOM); the other is 
multi layer perceptron (MLP). The computation result shows 
that ANN computing on GPU is much faster than on standard 
CPU when the neural network is large. And some design rules 
for improve the efficiency on GPU are given.  
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I. INTRODUCTION 

Artificial neural network is widely used in classification 
and pattern recognition. In this paper, two kinds of ANN, 
self-organizing maps (SOM) [1] and multi layer perceptron 
(MLP), are implemented on graphic hardware for speed up 
the computation.  

MLP is a very simple neural network, the process is 
linear with one input layer, several hidden layer, and an 
output layer. It is usually trained by back propagation (BP) 
algorithm. SOM consists of one layer of n-dimensional 
units (neurons). It is fully connected with the network input. 
Additionally, there exist lateral connections through which 
a topological structure is imposed. For the standard model, 
the topology is a regular two-dimensional map instantiated 
by connections between each unit and its direct neighbors.  

For relative works, Kyoung-Su Oh et al.[2] implement 
an GPU based MLP for classify the text area in a image, 
and give an almost 20 time speed up over CPU. Thomas 

Rolfes[3] gives an artificial neural network implementation 
using a GPU-based BLAS level 3 style single-precisions 
general matrix-matrix product. Bohn[4] describes an SOM 
calculation method based on OpenGL hardware speed-up 
on SGI workstation, which inspired our work to further 
deploy the possibility to implement ANN calculation based 
on PC commodity graphic hardware.  

In recent years, the graphic hardware performance is 
doubled every 12 months which is much faster than CPU’s 
performance increase speed which is doubled every 18 
months. And GPU vendors had make programmability on 
GPU, which make it possible for implement general-
purpose computation. 

In this paper, two kinds of ANN computation on GPU 
are given. In section 2, SOM computation model and 
implementation on graphic hardware is discussed. In 
section 3, MLP computation model and implementation on 
GPU is discussed. In section 4, the computation result and 
comparison are given for both CPU and GPU. In section 5, 
some of the design details and lessons we learned during 
implementation are given. In section 6, conclusion and 
some future works are given.   

II. COMPUTATIONAL MODEL AND IMPLEMENT 
METHOD FOR SOM 

A. The SOM Computational Model  

The SOM takes a two-step computation: search for the best 
matching unit (BMU) and modify the map according to a 
distance function of the lateral connections. Usually, the 
Euclid distance is chosen as similarity measure method. 
The calculation formula takes as follow: 

 || Wb – ξ || < || Wi – ξ ||   for any i;               [1] 

Modify the unit value regarding a distance function of the 
lateral connections as follow. 

        Wi
new=Wi

old-εΩ(rb,ri)*(Wi
old- ξ )                 [2] 



As Bohn described, three OpenGL[5] extension functions 
are needed, they are blending, glColorMatrix and 
glminmax. These functions are fully support by SGI 
workstation, but only partially supported by PC graphic 
hardware. So it is difficult to fully implement SOM on 
OpenGL. Fortunately, current GPU provide more 
programmability, which makes it possible for implement 
the SOM calculation on GPU.  

B. SOM Implementation on Programmable GPU 

As discussed in the previous part, not all OpenGL functions 
supported by SGI workstation are supported by PC 
commodity graphic hardware. But recently, graphic 
hardware vendors provide programmability and some high-
level program language[6,7]. This kind of programmability is 
at a lower level than OpenGL, and is more powerful than 
fixed OpenGL function. In this implementation, Cg [8] (C 
for graphic) is chosen as developing environment.  

As described in previous part, the calculation contains 
two steps. The first is finding the best matching unit, and 
the second is adjusting the value according to the distance 
from BMU.  

For finding the BMU, two steps are needed. In the first 
step, similarity measurement is calculated; in the second 
step, the minimum values which represent the BMU are 
found and located. The similarity computation code for 
GPU takes as follow:  

Half 4 temp= tex2D(texture,coords) -intrain; 

c.x = dot(temp,temp);  

c.yz= coords.xy; 

The first two sentences calculate the square of Euclid 
distance of two vectors, the third sentence save the unit 
coordinate, which will be used late for locating the best 
match unit.  

The main difficulty in Cg computation comes from 
finding the minimum value and determination its location, 
for there is no global variable in Cg environment. We use a 
multipass method to calculate it. Our scheme shows as Fig 
1. In each pass we find the minimum value of four units 
show as colored and save the result in a small size texture. 
After some step, the size decrease to 1, and we can get the 
minimum value and its location. 

After get BMU, we can adjust the self-organize map 
according to equation [2]. 

III. MLP FOR  REAL TIME BALL RECOGNIZING IN 
FIRA SOCCER ROBOT 

A. Background 

Currently, there are two main world soccer-robot 
competition, one is RoboCup[9], the other is FIRA[10]. In 
both case, Object are identified by their unique color. But in 
the near future, these color cues may be removed, so new 
vision algorithms based on model are needed to cope with 
the situation. The model based algorithm for finding ball 

Fig. 1: Scheme for find the minimum value



and non-ball location will discussed below.  

Fig 2. An image from FIRA SimuroSot 

Fig2 shows an image taken from FIRA robot soccer 
5vs5 simulator. Our task is to develop a model to recognize 
the ball, and then using this model to recognize the ball in 
real time.  

For each location, the characters are calculated 
considering the color value at a small area around the 
location. The area radius takes as 7, which is shown in Fig 
3, 

Fig 3. region for character calculation 

Seven parameters are selected as characters of the ball. 
There are 3 average value of the colors red, green and blue 
around the concerning position: 
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And the luminance: 

luminance bgr ++=  

B.Computational Model of MLP 

Three layer MLP neural network is selected to recognize 
the ball. The input layer consists of seven nodes for seven 
characters. The hidden layer consists of three nodes, and the 
output layer consists of just one node. Back propagation 
method was chosen to train the network.  

        The train set takes as follow. 16 locations are selected 
from each of 10 robot cars, 4 locations are selected from 
center of ball, and one location is selected from background 
field. Totally, 165 locations are selected as the train set. For 
each selected location, seven characters are calculated and 
take as an element of the train set. 

The trained MLP is used to recognize and trace the 
ball in real time.  

There are two main computation steps for MLP used 
as the classification machine. The first one is matrix 
multiplication: 

bxwnet +•=                     [3] 

The second one is sigmoid function calculation: 

               nete
net −+

=
1

1)(σ                  [4] 

As for the determination of ball on robot soccer, the MLP 
calculation was applied on each point in the play ground. 
And MLP was used to distinguish between ball and non-
ball position.  

c. MLP Implementation on Graphic Hardware  

Current GPU has a limited instruction length and a limited 
number of temporary variables for calculation at each 
location. So multipass is needed for complex problem. For 
MLP discussed in this section, three passes are performed. 
In the first pass, average values of three color and 
luminance are calculated. In the second pass, the standard 
deviations of the three colors are calculated. In the third 
pass, classification result is got from MLP calculation on 
the characteristic.  



In this calculation, we use a new Nvidia’s GF6000 
serious graphic hardware. The reason is that the ATI’s GPU 
supports very few numbers of operations in each pass; so 
more passes are need for MLP calculation. Old Nvidia’s 
GPU does not support fully float texture, which is crucial 
for the precision of result. 

IV. RESULTS AND DISCUSSION 

The environment for CPU computing is INTEL P4 2.4G. 
Based on this PC, ATI 9550 and Nvidia GF5700 GPU are 
used for SOM computing, Nvidia GF6200 GPU is used for 
MLP computing.  

A. CPU and GPU Train Time for SOM and Discussion 

Usually the train process for self organize map is time 
consuming when the map is large enough. So there is a 
need to speed up the training procedure. For our test 
problem, 80 data are chosen for training the SOM and 
average time for the computation on CPU and GPU can be 
reached. The result is shown in Fig 4. 

Fig. 4: SOM train computing time on GPU and CPU 

The result shows that GPU based implementation is 
faster than CPU, especially for large self organize map. As 
map size increase, the computation time on GPU increase 
slowly than that on CPU. And different GPU had different 
result, for Nvidia’s GPU, it takes the least time for small 
size SOM like 128*128, but for ATI’s GPU it takes the 
least time for larger size SOM like 256*256. The difference 
may come from vendor’s hardware implementation. The 
result shows that ATI’s graphic card takes more time for 
the compile of program and the code is better optimized so 
computation time decrease with more data, but Nvidia’s 
graphic card takes less time for compile and takes more 
time to computing. 

B. MLP Computation Time for CPU and GPU 

The application of MLP in this paper is to trace the ball in 
robot soccer in real time. The result is shown in table 1. 

The result shows that GPU based MLP computation is 
about 200 times faster than that of CPU. And the result also 
shows that GPU computation is fast enough for the locating 
of the ball in real time. 

TABLE I: MLP COMPUTATION ON CPU AND GPU. 

CPU /ms 11328 

GPUN /ms 46 

V. SOME IMPLEMENTATION DETAILS AND 
LESSONS 

To increase the efficiency, some basic rule should obey. 
The main rules are given below.  

First, create the GPU hardware program only once and 
enable it when it is needed. The reason is that when a new 
program is created, it will be compiled by Cg, which is time 
consuming.  

Second, if possible, do one’s best to decrease the 
calculation passes. For computation scheme described in 
section 2.2, the main bottleneck is at finding minimum 
procedure. The test shows that the bottleneck comes from 
multi-pass used in finding minimum procedure. Table 2 
shows result for different scheme of finding the minimum. 
To decrease the pass, we make two changes, the first is to 
combine the value calculation with one pass of find 
minimum, and the second is to combine two pass of find 
minimum computation into one pass. Instead of calculate 4 
units, 16 units are calculated. GPUA represent calculation 
on ATI graphic card and GPUN represent the calculation on 
NVIDIA graphic card. The performance increase is clear, 
especially for Nvidia’s graphic card. 

TABLE II: COMPARISON BETWEEN MORE AND FEW PASS 

KFM size 128*128 256*256 512*512 
GPUA more 
pass /ms 

366 400 533 

GPUA few pass 
/ms 

211 244 511 

GPUN more 
pass /ms 

190 640 2889 

GPUN few pass 
/ms 

104 256 900 

Third, do best to decrease the data exchange between CPU 
and GPU. Usually OpenGL’s PBuffer are used to save the 
intermediate result in a texture on GPU and reuse it as an 
input data. Harris[3] had created a class called “Render to 
Texture” to easy the use of PBuffer. We had used this class 
in our program. 

Fourth, hardware from different venders usually has 
different property. So if one implementation is not work at 
one kind of hardware, try another implementation. For 

0
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3000

CPU /ms 122 500 2000

GPUA /ms 211 244 511

GPUN /ms 104 256 900
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example, in the calculation of minimum value, firstly we 
use the following code:  

c=tex2D(texture,coords).x<tex2D(texture,coords+half
2(0,offset)).x? tex2D(texture,coords) : 
tex2D(texture,coords+half2(0,offset)); 

Which can give the correct result in ATI card, but can not 
get correct result in an Nvidia’s card, we think that the 
inner parallel schemes makes the difference. To work 
around it, the above sentence is changed to the following 
logical equivalent one: 

half4 c=tex2D(tex,coords); 

if (c.x>tex2D(tex,coords+half2(0,half_side)).x) 

 c=tex2D(tex,coords+half2(0,half_side)); 

Then the result is correct for both graphic cards. 

VI. CONCLUSION 

In this paper, implementation for two ANN models on 
graphic hardware is given. Inherent parallelism of 
commodity graphic hardware is used to accelerate the 
computation of ANN. The result shows that GPU is capable 
for some of ANN calculation, the graphic hardware make it 
possible for an increasing performance/cost ratio on the 
area of large size ANN computation. 

Compared to Bohn’s initial computation on SGI 
workstation, our implementation has two benefits. One is 
our calculation is more precise, for we had use the float 
point computing. The other is that we only use a 
commodity available graphic card, which is much more 
easily available than SGI workstation so can be widely used.  

The implementation on graphic hardware introduce in 
this paper has other implicit benefit too. For the SOM 
computing, a multi-texture or 3-D texture can be used to 
store the map and make more general SOM computing 
without the restriction of the vector length of 4. For the 
MLP used in robot soccer, some graphic hardware have 
“video in” function, using this kind of graphic hardware; 
image information can be retrieved directly from camera 
and store on graphic memory, and don’t need to transfer 
data between CPU and GPU, which will speed the process.  

We can also do other general ANN computation on 
GPU, because GPU provide almost all arithmetic operation, 
logic operation and some important mathematic function. 
And for the application of neural network on images, it is 
more naive to make such computing on a graphic hardware. 

For future works, one is to make other kinds of ANN 
computation on GPU. The other is to further deploy the 

MLP on more real situation of robot soccer, which include 
select better parameter and use faster algorithm on GPU. 
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