
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/4202315

Artificial neural network computation on graphic process unit

Conference Paper · January 2005

DOI: 10.1109/IJCNN.2005.1555903 · Source: IEEE Xplore

CITATIONS

62
READS

1,128

3 authors, including:

Zhongwen Luo

China University of Geosciences

22 PUBLICATIONS 230 CITATIONS

SEE PROFILE

Hongzhi Liu

Peking University

52 PUBLICATIONS 409 CITATIONS

SEE PROFILE

All content following this page was uploaded by Hongzhi Liu on 21 August 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/4202315_Artificial_neural_network_computation_on_graphic_process_unit?enrichId=rgreq-eb58cc64992254434173431f5f08ee90-XXX&enrichSource=Y292ZXJQYWdlOzQyMDIzMTU7QVM6MTMyNTQzNTA4NjUyMDM1QDE0MDg2MTIyNDQwMTM%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/4202315_Artificial_neural_network_computation_on_graphic_process_unit?enrichId=rgreq-eb58cc64992254434173431f5f08ee90-XXX&enrichSource=Y292ZXJQYWdlOzQyMDIzMTU7QVM6MTMyNTQzNTA4NjUyMDM1QDE0MDg2MTIyNDQwMTM%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-eb58cc64992254434173431f5f08ee90-XXX&enrichSource=Y292ZXJQYWdlOzQyMDIzMTU7QVM6MTMyNTQzNTA4NjUyMDM1QDE0MDg2MTIyNDQwMTM%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhongwen-Luo?enrichId=rgreq-eb58cc64992254434173431f5f08ee90-XXX&enrichSource=Y292ZXJQYWdlOzQyMDIzMTU7QVM6MTMyNTQzNTA4NjUyMDM1QDE0MDg2MTIyNDQwMTM%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhongwen-Luo?enrichId=rgreq-eb58cc64992254434173431f5f08ee90-XXX&enrichSource=Y292ZXJQYWdlOzQyMDIzMTU7QVM6MTMyNTQzNTA4NjUyMDM1QDE0MDg2MTIyNDQwMTM%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/China_University_of_Geosciences?enrichId=rgreq-eb58cc64992254434173431f5f08ee90-XXX&enrichSource=Y292ZXJQYWdlOzQyMDIzMTU7QVM6MTMyNTQzNTA4NjUyMDM1QDE0MDg2MTIyNDQwMTM%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhongwen-Luo?enrichId=rgreq-eb58cc64992254434173431f5f08ee90-XXX&enrichSource=Y292ZXJQYWdlOzQyMDIzMTU7QVM6MTMyNTQzNTA4NjUyMDM1QDE0MDg2MTIyNDQwMTM%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hongzhi-Liu-7?enrichId=rgreq-eb58cc64992254434173431f5f08ee90-XXX&enrichSource=Y292ZXJQYWdlOzQyMDIzMTU7QVM6MTMyNTQzNTA4NjUyMDM1QDE0MDg2MTIyNDQwMTM%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hongzhi-Liu-7?enrichId=rgreq-eb58cc64992254434173431f5f08ee90-XXX&enrichSource=Y292ZXJQYWdlOzQyMDIzMTU7QVM6MTMyNTQzNTA4NjUyMDM1QDE0MDg2MTIyNDQwMTM%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Peking_University?enrichId=rgreq-eb58cc64992254434173431f5f08ee90-XXX&enrichSource=Y292ZXJQYWdlOzQyMDIzMTU7QVM6MTMyNTQzNTA4NjUyMDM1QDE0MDg2MTIyNDQwMTM%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hongzhi-Liu-7?enrichId=rgreq-eb58cc64992254434173431f5f08ee90-XXX&enrichSource=Y292ZXJQYWdlOzQyMDIzMTU7QVM6MTMyNTQzNTA4NjUyMDM1QDE0MDg2MTIyNDQwMTM%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hongzhi-Liu-7?enrichId=rgreq-eb58cc64992254434173431f5f08ee90-XXX&enrichSource=Y292ZXJQYWdlOzQyMDIzMTU7QVM6MTMyNTQzNTA4NjUyMDM1QDE0MDg2MTIyNDQwMTM%3D&el=1_x_10&_esc=publicationCoverPdf

Artificial Neural Network Computation on

Graphic Process Unit
Zhongwen Luo, Hongzhi Liu and Xincai Wu

Faculty of Information, China University of Geoscience(Wuhan) , Wuhan 430074,China
E-mail : luozw@cug.edu.cn,liuhz87.student@sina.com, xcwu@cug.edu.cn

Abstract

Artificial Neural Network (ANN) is widely used in pattern
recognition related area. In some case, the computational load
is very heavy, in other case, real time process is required. So
there is a need to apply a parallel algorithm on it, and usually
the computation for ANN is inherently parallel. In this paper,
graphic hardware is used to speed up the computation of ANN.
In recent years, graphic processing unit (GPU) grows faster
than CPU. Graphic hardware venders provide
programmability on GPU. In this paper, application of
commodity available GPU for two kinds of ANN models was
explored. One is the self-organizing maps (SOM); the other is
multi layer perceptron (MLP). The computation result shows
that ANN computing on GPU is much faster than on standard
CPU when the neural network is large. And some design rules
for improve the efficiency on GPU are given.

Keywords: Graphic Process Unit; ANN; SOM; MLP

I. INTRODUCTION

Artificial neural network is widely used in classification
and pattern recognition. In this paper, two kinds of ANN,
self-organizing maps (SOM) [1] and multi layer perceptron
(MLP), are implemented on graphic hardware for speed up
the computation.

MLP is a very simple neural network, the process is
linear with one input layer, several hidden layer, and an
output layer. It is usually trained by back propagation (BP)
algorithm. SOM consists of one layer of n-dimensional
units (neurons). It is fully connected with the network input.
Additionally, there exist lateral connections through which
a topological structure is imposed. For the standard model,
the topology is a regular two-dimensional map instantiated
by connections between each unit and its direct neighbors.

For relative works, Kyoung-Su Oh et al.[2] implement
an GPU based MLP for classify the text area in a image,
and give an almost 20 time speed up over CPU. Thomas

Rolfes[3] gives an artificial neural network implementation
using a GPU-based BLAS level 3 style single-precisions
general matrix-matrix product. Bohn[4] describes an SOM
calculation method based on OpenGL hardware speed-up
on SGI workstation, which inspired our work to further
deploy the possibility to implement ANN calculation based
on PC commodity graphic hardware.

In recent years, the graphic hardware performance is
doubled every 12 months which is much faster than CPU’s
performance increase speed which is doubled every 18
months. And GPU vendors had make programmability on
GPU, which make it possible for implement general-
purpose computation.

In this paper, two kinds of ANN computation on GPU
are given. In section 2, SOM computation model and
implementation on graphic hardware is discussed. In
section 3, MLP computation model and implementation on
GPU is discussed. In section 4, the computation result and
comparison are given for both CPU and GPU. In section 5,
some of the design details and lessons we learned during
implementation are given. In section 6, conclusion and
some future works are given.

II. COMPUTATIONAL MODEL AND IMPLEMENT
METHOD FOR SOM

A. The SOM Computational Model

The SOM takes a two-step computation: search for the best
matching unit (BMU) and modify the map according to a
distance function of the lateral connections. Usually, the
Euclid distance is chosen as similarity measure method.
The calculation formula takes as follow:

 || Wb – ξ || < || Wi – ξ || for any i; [1]

Modify the unit value regarding a distance function of the
lateral connections as follow.

 Wi
new=Wi

old-εΩ(rb,ri)*(Wi
old- ξ) [2]

As Bohn described, three OpenGL[5] extension functions
are needed, they are blending, glColorMatrix and
glminmax. These functions are fully support by SGI
workstation, but only partially supported by PC graphic
hardware. So it is difficult to fully implement SOM on
OpenGL. Fortunately, current GPU provide more
programmability, which makes it possible for implement
the SOM calculation on GPU.

B. SOM Implementation on Programmable GPU

As discussed in the previous part, not all OpenGL functions
supported by SGI workstation are supported by PC
commodity graphic hardware. But recently, graphic
hardware vendors provide programmability and some high-
level program language[6,7]. This kind of programmability is
at a lower level than OpenGL, and is more powerful than
fixed OpenGL function. In this implementation, Cg [8] (C
for graphic) is chosen as developing environment.

As described in previous part, the calculation contains
two steps. The first is finding the best matching unit, and
the second is adjusting the value according to the distance
from BMU.

For finding the BMU, two steps are needed. In the first
step, similarity measurement is calculated; in the second
step, the minimum values which represent the BMU are
found and located. The similarity computation code for
GPU takes as follow:

Half 4 temp= tex2D(texture,coords) -intrain;

c.x = dot(temp,temp);

c.yz= coords.xy;

The first two sentences calculate the square of Euclid
distance of two vectors, the third sentence save the unit
coordinate, which will be used late for locating the best
match unit.

The main difficulty in Cg computation comes from
finding the minimum value and determination its location,
for there is no global variable in Cg environment. We use a
multipass method to calculate it. Our scheme shows as Fig
1. In each pass we find the minimum value of four units
show as colored and save the result in a small size texture.
After some step, the size decrease to 1, and we can get the
minimum value and its location.

After get BMU, we can adjust the self-organize map
according to equation [2].

III. MLP FOR REAL TIME BALL RECOGNIZING IN
FIRA SOCCER ROBOT

A. Background

Currently, there are two main world soccer-robot
competition, one is RoboCup[9], the other is FIRA[10]. In
both case, Object are identified by their unique color. But in
the near future, these color cues may be removed, so new
vision algorithms based on model are needed to cope with
the situation. The model based algorithm for finding ball

Fig. 1: Scheme for find the minimum value

and non-ball location will discussed below.

Fig 2. An image from FIRA SimuroSot

Fig2 shows an image taken from FIRA robot soccer
5vs5 simulator. Our task is to develop a model to recognize
the ball, and then using this model to recognize the ball in
real time.

For each location, the characters are calculated
considering the color value at a small area around the
location. The area radius takes as 7, which is shown in Fig
3,

Fig 3. region for character calculation

Seven parameters are selected as characters of the ball.
There are 3 average value of the colors red, green and blue
around the concerning position:

49
3

3

3

3
,, ∑∑

−= −=
++=

i j
jyixyx cmean

3 standard deviation of the colors red green and blue:

48)(
3

3

3

3

2
,,, ∑∑

−= −=
++ −=

i j
yxjyixyx meancdelta

And the luminance:

luminance bgr ++=

B.Computational Model of MLP

Three layer MLP neural network is selected to recognize
the ball. The input layer consists of seven nodes for seven
characters. The hidden layer consists of three nodes, and the
output layer consists of just one node. Back propagation
method was chosen to train the network.

 The train set takes as follow. 16 locations are selected
from each of 10 robot cars, 4 locations are selected from
center of ball, and one location is selected from background
field. Totally, 165 locations are selected as the train set. For
each selected location, seven characters are calculated and
take as an element of the train set.

The trained MLP is used to recognize and trace the
ball in real time.

There are two main computation steps for MLP used
as the classification machine. The first one is matrix
multiplication:

bxwnet +•= [3]

The second one is sigmoid function calculation:

 nete
net −+

=
1

1)(σ [4]

As for the determination of ball on robot soccer, the MLP
calculation was applied on each point in the play ground.
And MLP was used to distinguish between ball and non-
ball position.

c. MLP Implementation on Graphic Hardware

Current GPU has a limited instruction length and a limited
number of temporary variables for calculation at each
location. So multipass is needed for complex problem. For
MLP discussed in this section, three passes are performed.
In the first pass, average values of three color and
luminance are calculated. In the second pass, the standard
deviations of the three colors are calculated. In the third
pass, classification result is got from MLP calculation on
the characteristic.

In this calculation, we use a new Nvidia’s GF6000
serious graphic hardware. The reason is that the ATI’s GPU
supports very few numbers of operations in each pass; so
more passes are need for MLP calculation. Old Nvidia’s
GPU does not support fully float texture, which is crucial
for the precision of result.

IV. RESULTS AND DISCUSSION

The environment for CPU computing is INTEL P4 2.4G.
Based on this PC, ATI 9550 and Nvidia GF5700 GPU are
used for SOM computing, Nvidia GF6200 GPU is used for
MLP computing.

A. CPU and GPU Train Time for SOM and Discussion

Usually the train process for self organize map is time
consuming when the map is large enough. So there is a
need to speed up the training procedure. For our test
problem, 80 data are chosen for training the SOM and
average time for the computation on CPU and GPU can be
reached. The result is shown in Fig 4.

Fig. 4: SOM train computing time on GPU and CPU

The result shows that GPU based implementation is
faster than CPU, especially for large self organize map. As
map size increase, the computation time on GPU increase
slowly than that on CPU. And different GPU had different
result, for Nvidia’s GPU, it takes the least time for small
size SOM like 128*128, but for ATI’s GPU it takes the
least time for larger size SOM like 256*256. The difference
may come from vendor’s hardware implementation. The
result shows that ATI’s graphic card takes more time for
the compile of program and the code is better optimized so
computation time decrease with more data, but Nvidia’s
graphic card takes less time for compile and takes more
time to computing.

B. MLP Computation Time for CPU and GPU

The application of MLP in this paper is to trace the ball in
robot soccer in real time. The result is shown in table 1.

The result shows that GPU based MLP computation is
about 200 times faster than that of CPU. And the result also
shows that GPU computation is fast enough for the locating
of the ball in real time.

TABLE I: MLP COMPUTATION ON CPU AND GPU.

CPU /ms 11328

GPUN /ms 46

V. SOME IMPLEMENTATION DETAILS AND
LESSONS

To increase the efficiency, some basic rule should obey.
The main rules are given below.

First, create the GPU hardware program only once and
enable it when it is needed. The reason is that when a new
program is created, it will be compiled by Cg, which is time
consuming.

Second, if possible, do one’s best to decrease the
calculation passes. For computation scheme described in
section 2.2, the main bottleneck is at finding minimum
procedure. The test shows that the bottleneck comes from
multi-pass used in finding minimum procedure. Table 2
shows result for different scheme of finding the minimum.
To decrease the pass, we make two changes, the first is to
combine the value calculation with one pass of find
minimum, and the second is to combine two pass of find
minimum computation into one pass. Instead of calculate 4
units, 16 units are calculated. GPUA represent calculation
on ATI graphic card and GPUN represent the calculation on
NVIDIA graphic card. The performance increase is clear,
especially for Nvidia’s graphic card.

TABLE II: COMPARISON BETWEEN MORE AND FEW PASS

KFM size 128*128 256*256 512*512
GPUA more
pass /ms

366 400 533

GPUA few pass
/ms

211 244 511

GPUN more
pass /ms

190 640 2889

GPUN few pass
/ms

104 256 900

Third, do best to decrease the data exchange between CPU
and GPU. Usually OpenGL’s PBuffer are used to save the
intermediate result in a texture on GPU and reuse it as an
input data. Harris[3] had created a class called “Render to
Texture” to easy the use of PBuffer. We had used this class
in our program.

Fourth, hardware from different venders usually has
different property. So if one implementation is not work at
one kind of hardware, try another implementation. For

0

1000

2000

3000

CPU /ms 122 500 2000

GPUA /ms 211 244 511

GPUN /ms 104 256 900

128*128 256*256 512*512

example, in the calculation of minimum value, firstly we
use the following code:

c=tex2D(texture,coords).x<tex2D(texture,coords+half
2(0,offset)).x? tex2D(texture,coords) :
tex2D(texture,coords+half2(0,offset));

Which can give the correct result in ATI card, but can not
get correct result in an Nvidia’s card, we think that the
inner parallel schemes makes the difference. To work
around it, the above sentence is changed to the following
logical equivalent one:

half4 c=tex2D(tex,coords);

if (c.x>tex2D(tex,coords+half2(0,half_side)).x)

 c=tex2D(tex,coords+half2(0,half_side));

Then the result is correct for both graphic cards.

VI. CONCLUSION

In this paper, implementation for two ANN models on
graphic hardware is given. Inherent parallelism of
commodity graphic hardware is used to accelerate the
computation of ANN. The result shows that GPU is capable
for some of ANN calculation, the graphic hardware make it
possible for an increasing performance/cost ratio on the
area of large size ANN computation.

Compared to Bohn’s initial computation on SGI
workstation, our implementation has two benefits. One is
our calculation is more precise, for we had use the float
point computing. The other is that we only use a
commodity available graphic card, which is much more
easily available than SGI workstation so can be widely used.

The implementation on graphic hardware introduce in
this paper has other implicit benefit too. For the SOM
computing, a multi-texture or 3-D texture can be used to
store the map and make more general SOM computing
without the restriction of the vector length of 4. For the
MLP used in robot soccer, some graphic hardware have
“video in” function, using this kind of graphic hardware;
image information can be retrieved directly from camera
and store on graphic memory, and don’t need to transfer
data between CPU and GPU, which will speed the process.

We can also do other general ANN computation on
GPU, because GPU provide almost all arithmetic operation,
logic operation and some important mathematic function.
And for the application of neural network on images, it is
more naive to make such computing on a graphic hardware.

For future works, one is to make other kinds of ANN
computation on GPU. The other is to further deploy the

MLP on more real situation of robot soccer, which include
select better parameter and use faster algorithm on GPU.

REFERENCES

[1] Teuvo Kohonen. Self-organizing maps. Springer Verlag, New
York, 1997.

[2] Kyoung-Su Oh, Keechul Jung, GPU implementation of neural
networks, Pattern Recognition 37, 6, 1311-1314, 2004

[3] Thomas Rolfes. Artificial Neural Networks on Programmable
Graphics Hardware, in Game Programming Gems 4,pp373-378,
2004

[4] Bohn, C.A. Kohonen Feature Mapping Through Graphics
Hardware. In Proceedings of 3rd Int. Conference on
Computational Intelligence and Neurosciences 1998. 1998.

[5] Woo, M., Neider, J., Davis, T., Shreiner, D. OPENGL
Programming Guide,Addison-Wisley,1999

[6] Femando R. and Killgard, M.J. The Cg Tutorial: The Definitive
Guide to Programmable Real-Time Graphics Addison-Wisley,
2003

[7] Harris, M. http://www.gpgpu.org/developer/, 2003

[8] Mark, W.R., Glanville, R. S., Akeley, K. and Killgard, M.J. 2003.
Cg : A system for programming graphics hardware in a C-like
language. ACM Trans. Graph. 22, 3, 896-907

[9] http://www.robocup.com

[10] http://www.fira.net

View publication statsView publication stats

https://www.researchgate.net/publication/4202315

