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Abstract

We present a robust approach for reconstructing the main architectural structure of complex indoor environments given a set

of cluttered 3D input range scans. Our method uses an efficient occlusion-aware process to extract planar patches as candidate

walls, separating them from clutter and coping with missing data, and automatically extracts the individual rooms that compose the

environment by applying a diffusion process on the space partitioning induced by the candidate walls. This diffusion process, which

has a natural interpretation in terms of heat propagation, makes our method robust to artifacts and other imperfections that occur

in typical scanned data of interiors. For each room, our algorithm reconstructs an accurate polyhedral model by applying methods

from robust statistics. We demonstrate the validity of our approach by evaluating it on both synthetic models and real-world 3D

scans of indoor environments.
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1. Introduction

In architecture and engineering, there is a substantial need

for semantically rich 3D models of buildings. As 3D designs

are most often not available, or significantly different from the

“as-is” condition of a given building, technology for creating

models from observations is of primary importance. 3D acqui-

sition devices such as laser scanners are now available for fast,

accurate and cost-effective acquisition of 3D data. However, ef-

ficient methods must be devised to extract higher-level models

from the acquired raw point-cloud data.

Of particular interest is the problem of determining the ar-

chitectural structure of indoor environments (e.g., room walls,

floors and ceilings). Indoor reconstruction exhibits a number of

distinctive challenges that make it significantly harder to man-

age than the more well-studied problem of building shape re-

construction from outdoor scans (see also Sec. 2). First of all,

indoor reconstruction methods must be significantly more toler-

ant to missing data than their outdoor counterparts, since envi-

ronments such as offices and apartments exhibit extremely high

levels of clutter. This typically results in heavy occlusions of

walls and other structures of interest (see also Fig. 1). Secondly,

windows and other highly reflective surfaces are often present

in such scenes. As a results, the acquired model is heavily af-

fected by large-scale artifacts, measurement noise and missing

data, due to the critical interaction properties of the reflective el-

ements with the measurement devices (see also Fig. 1). Finally,

creating structured 3D models of typical indoor environments,

such as apartments and office buildings, poses the challenge of

recognizing their interior structure in terms of a graph of con-

nected rooms and corridors.

Much of the work on interior environments has focused

so far on the analysis and classification of the objects in the

(a) (b)

Figure 1: Heavy occlusions (a) and large-scale artifacts (b) often occur in

scanned 3D models of interior rooms.

scene [1, 2], while the problem of recovering architectural com-

ponents is less developed, and has concerned mostly floor plan

reconstruction and wall boundary determination (see Sec. 2).

Most current methods rely on the implicit assumption that the

architectural components are well sampled. Even those ap-

proaches that include an explicit filtering stage in their pipeline

are only able to tolerate small amounts of clutter and can fail in

many situations that are commonly found in real world scenes.

Moreover, many of the existing solutions are targeted at sim-

ply connected environments such as corridors and cannot re-

construct the shape of individual rooms within more complex

environments.

In this paper, we present a robust pipeline for reconstruct-

ing a clean architectural model of an indoor environment from

a set of cluttered 3D input scans that partially cover the scene

of interest (typically 1 or 2 panoramic scans per room). Our

method only assumes that the scanner positions are known, and

the environment is composed of multiple rooms bound by ver-
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Figure 2: The main phases of our algorithm: From the input model (a) we robustly extract candidate walls (b). These are used to construct a cell complex in the 2D

floor plane. From this we obtain a partitioning into individual rooms (c) and finally the individual room polyhedra (d). Note that in (a) the ceiling has been removed

for the sake of visual clarity.

tical walls, which holds true for a vast majority of buildings,

and is capable to recover a room graph, as well as an accurate

polyhedral representation of each room.

The whole pipeline is depicted in Fig. 2. An occlusion-aware

process extracts vertical planar patches as candidates for gen-

uine wall segments, separating them from clutter and coping

with missing data by using efficient viewpoint-based visibility

computations on a per-scan basis. Starting from a space par-

titioning induced by the candidate walls, we use a robust heat

diffusion process to propagate similarities between cells of the

partitioning which belong to the same room. We then cluster

the area into multiple rooms using an iterative binary subdi-

vision algorithm. Unlike standard methods like k-means, our

solution automatically finds the correct number of rooms with-

out a termination threshold by exploiting the knowledge of the

scanner positions.

This work is a significantly extended version of our CADCG

2013 contribution [3]. Besides supplying a more thorough ex-

position, we provide here significant new material and a number

of important novel contributions. Our main improvements are

the following:

• a thorough description of the room detection process,

which shows in more detail the properties of the computed

diffusion embedding and provides a comprehensive analy-

sis of the subdivision scheme;

• important methodological improvements, including a

post-processing stage that corrects possible imperfections

in the clustering results and a more effective robust tech-

nique based on M-estimators [4] for the reconstruction of

the final wall planes;

• an extended evaluation, where we perform both a quali-

tative and quantitative analysis on a wider set of inputs,

including two large real-world datasets and two new syn-

thetic datasets that feature more complex room layouts and

high variability in the shapes of the rooms.

The overall approach is the first indoor reconstruction pipeline

capable of coping with heavy occlusions and missing data,

while automatically recognizing different rooms as separate

components. Such a room labeling is useful in many real-

world applications, such as room asset planning and manage-

ment or the definition of thermal zones for energy simulation.

As demonstrated in Sec. 7, the method is applicable to large

real-world environments with an extremely high level of clutter

and is robust to scanning noise and large artifacts originating

from reflecting surfaces.

2. Related Work

Many researchers have studied the problem of reconstructing

building structures from 3D laser range scan data. In this sec-

tion, we briefly discuss only the approaches that most closely

relate to ours.

Classical methods have often focused on creating visually re-

alistic models [5, 6], rather than structured 3D building models.

Even though some of these 3D reconstruction algorithms ex-

tract planar patches from data [7], this has the goal of finding

simplified representations of the models, rather than identify-

ing walls, ceilings, and floors. In this context, clutter is dealt

with with specialized hole-filling techniques [6, 8, 9], which

can only manage small-scale occlusions.

More recently, focus has shifted to the creation of more struc-

tured 3D models, with the purpose of simplifying the process of

converting point cloud data into a building information model

(the scan-to-BIM problem). In this sense, an important step

towards the production of semantically rich models is the de-

tection of the rooms in the input environment. Our previous

work [3], which is extended and complemented by this paper,

presents an occlusion-aware method that employs a diffusion

process to automatically extract multiple rooms from interiors

models. Recently, Turner and Zakhor [10] solved the same

problem by first over-segmenting the 2D floor plan into portions

of rooms and then merging adjacent segments to obtain the fi-

nal partitioning. However, their approach does not perform an

effective handling of occlusions. Ochmann et al. [11] also pro-

posed a method for segmenting laser-scanned indoor models

into different rooms, but their approach simply classifies the in-

put points and does not aim at reconstructing an accurate model

of the sole architectural components. Moreover, their algorithm

cannot successfully deal with non-convex shapes.

Surprisingly enough, the problem of occlusions is disre-

garded in much of the previous work in this area. Most ex-
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isting approaches assume either that the scene is almost com-

pletely visible or that parts of the building occluded from one

view are available from another viewpoint [6, 8, 12, 13]. This

assumption is not verified in most practical situations, which

have to deal with complex occlusions and heavily cluttered en-

vironments. Most recent work thus exploits prior knowledge

on building structure to achieve robustness. Using the heavily

constrained Manhattan World (MW) assumption, which forces

planar and axis-aligned orthogonal walls, Furukawa et al. [14]

reconstruct the 3D structure of moderately cluttered interiors

by fusing multiple depth maps (created from images) through

the solution of a volumetric Markov Random Field, while Vane-

gas et al. [15] reconstruct buildings from 3D laser range scans

by detecting box structures and shooting visibility rays to label

the volumes as either inside or outside. We focus, instead, on

less constrained environments with vertical, but non-orthogonal

walls and non-convex room boundaries.

In this setting, inside/outside labeling, possibly combined

with visibility computations and energy minimization tech-

niques, is often used to perform volumetric segmentation of

scanned models. Chauve et al. [16] build a BSP-like space par-

titioning structure from an input point cloud and then solve a

minimum st-cut on its cell-adjacency graph, using visibility cri-

teria for the labeling of the arcs. Similarly, Lafarge et al. [17]

compute a 3D Delaunay triangulation of a filtered version of the

input point set and solve a min-cut problem on its dual structure.

The arcs of the graph are weighted using visibility sampling.

Oesau et al. [18] generate a 3D space partitioning by stacking

lines detected in the vertical projection of the input model, then

label the volumetric cells into inside/outside using a visibility-

driven energy minimization. Sanchez and Zakhor [19] focus on

the simultaneous detection of both large-scale and small-scale

architectural structures, while Adan et al. [20, 21] proposed a

method that discriminates between empty space and occlusions,

and that can fill the latter. All of these methods assume moder-

ately clean environments and simply perform a binary classifi-

cation of space, while we propose an automatic segmentation of

the input model into the real expected number of rooms, which

is robust with respect to imperfect data due to the used diffusion

distances.

In contrast to the fully automatic methods described earlier,

other approaches include human intervention in their work-

flow [22, 23, 24]. This is orthogonal to our method, which could

also be employed as a component of an interactive solution.

3. Method overview

The input to our algorithm is a set of 3D point clouds rep-

resenting one or more rooms of the interior of a building and

taken at known locations (with at least one scan inside each

room). We assume that the scans are registered in the same ref-

erence frame and, without loss of generality, that the up-vector

is vup = (0, 0, 1). We consider only buildings with planar, ver-

tical walls, but, like Lafarge et al. [18], we drop the more re-

strictive Manhattan World assumption, and we also allow for

non-convex floor-plan room boundaries. The method produces

a set of k closed polyhedra as output, one for each room in the

input scene.

Although we target the reconstruction of indoor environ-

ments with vertical walls, our pipeline does not purely work in

a 2D projection in the xy-plane, but we perform operations both

in the 3D space and in the 2D projection. In particular, the patch

detection and the occlusion-based pruning are performed in 3D

space, since this captures the shape of the patches more faith-

fully, resulting in effective wall regions selection. Similarly, the

final wall fitting is performed directly on the points in 3D space

to make the estimate of their position more accurate. The subse-

quent diffusion-based room segmentation is performed entirely

in the 2D projection (i.e., the floor plan), as the assumption of

vertical walls makes the use of the third dimension redundant.

In the following, we summarize the main steps of our pro-

posed approach. A visual overview of the method is given in

Fig. 2.

Occlusion-aware selection of candidate walls Vertical pla-

nar regions that are potential wall patches are extracted

from the input scans. For each scan, occluding patches are

then projected onto the potential wall patches to recover

their actual (unoccluded) vertical extent and hence get a

robust indicator of the likelihood that they are genuine

wall segments, pruning those which are likely to be

clutter.

Automatic room segmentation This step is performed en-

tirely in the 2D projection of the xy-plane. First of all,

projected candidate walls are clustered to get a smaller

number of good representative lines for walls. Secondly,

a cell complex is built from the intersections of the rep-

resentative lines and its edges are weighted according to

the likelihood of being genuine walls. Diffusion distances

are then computed on the cell-graph of the complex and

they are used to drive an iterative clustering of the cells

that extracts the separate rooms.

Model reconstruction The accurate wall geometry is com-

puted for each room by robustly fitting the extracted planes

to the inlier points in 3D. Finally, each room polyhedron is

created by intersecting the reconstructed wall planes with

the planes of the floor and ceiling.

4. Occlusion-aware selection of candidate walls

In the first phase of our method we extract a set of planar

patches from the input 3D point clouds that correspond to can-

didate walls. We first grow planar regions in the 3D point cloud,

and to keep only segments which potentially correspond to can-

didate walls, we select only those regions that are classified as

vertical. A lightweight 3D occlusion check is used to further

prune the vertical patches, discarding those that have a low un-

occluded vertical extent.

4.1. Low-level segmentation into planar patches

Since our input models are raw and unstructured 3D point

clouds, the very first step of our pipeline must identify some
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Figure 6: Scatterplots showing two rotated views of a 3D projection of the

Euclidean embedding. Each point in the plot represents a face of the 2D cell

complex and is colored according to its final room assignment. The plot refers

to the dataset OFFICE 2 (Figure 2(d)) and the three dimensions have been man-

ually selected for illustration purposes only.

Figure 7: Color-coded visualization of the pairwise distances for the cell com-

plex of dataset OFFICE 3 (Fig. 13(e)) using two different values of the diffusion

time t. The matrices have been rearranged so that rows corresponding to faces

in a same cluster are adjacent; the colored bars to the sides of the matrices

highlight the correspondence with the detected rooms. Each red square on the

diagonal corresponds to the pairwise distances between faces in the same room

cluster. Note how faces within the same cluster are close, and how increasing

the diffusion time removes noise and emphasizes the structure of the clusters.

Visualizing the position of the faces in their embedding space

is helpful towards understanding the importance of the diffusion

process. However, this is not directly possible when m > 3. To

give an intuition of how the Euclidean embedding is shaped,

separate 3D projections of the embedded points could be con-

sidered, one at a time. In Fig. 6 we show the projection of a

diffusion embedding generated in our tests onto three of its di-

mensions, selected manually for the sake of illustration. Each

object in the plot corresponds to a face of the 2D cell complex

and is colored according to the room it is assigned as a result of

the segmentation stage. While this offers only a partial view of

the embedding space, it can be still understood how faces be-

longing to the same room are close in the diffusion embedding.

The remaining m − 3 coordinates, not shown in this plot, make

the separation between the faces belonging to different rooms

fully accurate.

The properties of the embedding can be analyzed indirectly

by considering the matrix of pairwise distances that results from

the diffusion process. In this matrix, the i-th row contains the

diffusion distances from face fi to all other faces in the complex.

In Fig. 7 a color-coded version of the distance matrix is shown.

Note that the order of the rows has been modified so that the

Input : Set F of the faces in the Euclidean embedding

Input : SetV of the faces containing viewpoints

Output: Set K of clusters defining the rooms

1 ClusterRooms (F ,V )

2 K ← ∅

3 K∞ ← F

4 do

// create clusters KR (new room) and

// K∞ (unlabeled faces containing f∞)

5 (KR, K∞ )← KMedoids(K∞ )

// update set of room clusters

6 K ← K ∪ KR

7 while ∃v ∈ V : v ∈ K∞
8 return {K }

9 end

Algorithm 1: Iterative clustering algorithm

rows corresponding to faces in a same room appear one after

another. The matrix has a block structure, with the red squares

along the diagonal denoting the distances between faces of a

same room. The first six squares correspond to rooms, while

the last square represents the distances between the outer faces.

It is worth noticing how the squares correspond to uniformly

low distance values, which confirms that faces within a same

room are close in terms of diffusion distances. The diffusion

process corrects many errors due to missing data, clutter, and

wrong candidate walls, emphasizing the room separations.

These arguments show that our diffusion formulation is very

effective in highlighting the similarities between faces within

the same room. We also noticed that the process is only slightly

influenced by variations in the parameter settings. All the re-

sults shown in this paper have been obtained using t = 40 and

σ = 0.0625. The maximum dimensionality of the embedding

(that is, the maximum number of eigenvalues that can be used

in the diffusion maps) is bounded from above by the number

of faces n f of the complex. To obtain correct results, larger

models require using a number of eigenvalues m that is higher

than the value n f for simpler environments. For this reason, to

accommodate for the more complex environments, we have set

m = min(n f , 80).

5.4. Iterative clustering

We use the embedding distances between the faces of the

2D complex described above to partition the set of faces into

a number of clusters, each corresponding to a single room of

the environment. Since the location at which each input point

cloud was taken is known (see Sec. 3), we exploit the view-

point information to automatically extract the correct number

of rooms.

A pseudo-code of the algorithm is given in Alg. 1. Our par-

titioning scheme works in a iterative manner, as depicted in

Fig. 8. At each step of the algorithm we apply a binary ver-

sion of the k-medoids clustering [31], that is, setting k = 2

(line 5 of Alg. 1). The k-medoids algorithm works by alternat-

ing between two steps: computation of the cluster centers (the
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Figure 8: Illustration of the iterative partitioning process. The input cell complex (framed in red) is iteratively divided into two clusters, generating an (unbalanced)

binary tree of splits. At each split (identified by a number), the set of input faces is partitioned into a room cluster and a set of unlabeled faces (shown in gray). The

partial partitioning corresponding to each split step can be seen in the top part of the figure. Note that the only splits that are actually performed in our algorithm

are the ones numbered in black; the Gray numbers denote hypothetical splits that we only examine to analyze the properties of the partitioning. In particular, we

show a measure of the quality of each split (including the hypothetical ones) in the bar plot in the inset. The numbers in the x-axis correspond to the identifiers of

the splits. It is easy to see how only the splits actually performed have meaningful quality values.

medoids) and assignment of the data points to the best cluster.

Differently from the more commonly used k-means algorithm,

the cluster centers are restricted to be items of the input dataset.

In particular, given two clusters K0 and K1, each medoid ki

is updated according to the rule ki = argminKi

∑
k j∈Ki
||ki − k j||

2.

At each step, the k-medoids is initialized by setting as initial

medoids the two faces that are farthest away from each other in

terms of diffusion distance. Of the two clusters that result from

each partitioning step, one always corresponds to a new single

room, denoted as KR in Alg. 1. For example, the split labeled 1

in Fig. 8 extracts the room shown in red. For environments with

genus ≥ 1 (such as the one shown in Fig.2), KR can correspond

to a hole (i.e. a set of outside faces disjoint from f∞); since we

assume that each room is scanned from at least one viewpoint

(Sec. 3), we discard KR if it does not include a face contain-

ing a viewpoint. The second cluster extracted by the k-medoids

contains the faces not yet labeled (shown in gray in Fig. 8 and

denoted asK∞ in Alg. 1) and always includes the face f∞. This

behavior is linked to the properties of the diffusion embedding,

which are analyzed in detail in the next paragraph. As the al-

gorithm proceeds to iteratively cluster K∞ (line 5 in Alg. 1), it

creates a split sequence similar to the one shown in the bottom

part of Fig. 8.

The iterative partitioning has to be stopped when all rooms

have been detected. To do so, we exploit the viewpoint infor-

mation that comes with the input point clouds. In particular, we

can assert that the faces that contain a scan position (v ∈ V in

Alg. 1) are certainly inside a room. Conversely, we can assume

that each room was scanned from at least one location inside

it (see Sec. 3). Hence, to check if K∞ contains yet unlabeled

rooms, it is sufficient to check whether it contains a face v ∈ V

(line 7 in Alg. 1). Otherwise we can conclude that all rooms

have been detected, in which case the partitioning process is

terminated. In Fig. 8, this termination criterion is met after the

last remaining room has been extracted in the split labeled 10.

The advantage of this method is that it stops the subdivision

when all rooms have been extracted, without the need of set-

ting a threshold or specifying the target number of rooms in

advance, which is a great advantage over other room clustering

alternatives.

Analysis. In the following analysis of our clustering algorithm

we will explain the systematic behavior of extracting a single

room in each iteration. We identified two factors for this behav-

ior – the specific properties of the diffusion embedding and of

the k-medoids clustering – which we examine here in detail.

A relevant property of the embedding is that the faces repre-

senting the outside (and including f∞) are closer than the faces

inside any other room. Evidence for this is provided by the

results in Fig. 5: the outer faces are closer to the room where

the source face is located (indicated by a green color) than the

faces in other rooms (indicated by a blue color). This property

is even more evident if we consider the visualization of the pair-

wise distance matrix in Fig. 7. The matrix has been rearranged

so that the colored bands to the left of the larger red square on

the diagonal represent the distances between the outer faces and

the faces of each room.
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This happens because the faces that correspond to the in-

side and those that represent the outside are connected by many

edges of the complex (the whole perimeter wall of the build-

ing); each edge contributes to putting the inside and the out-

side faces closer in terms of diffusion distances. On the other

hand, the separation between individual rooms is either due to

the physical distance or, in the case of adjacent rooms, to edges

associated to candidate walls. As long as such candidate walls

are sufficiently solid, the faces of a room are much closer in the

diffusion embedding to the outside faces than to the faces in any

other room.

During each iteration of the clustering process, the first as-

signment of faces to the medoids will create two unbalanced

clusters, with medoids k1 and k2. This is because the medoid

that is closer to f∞ (let us assume this is k2) will become the

pivot for most of the faces of the complex. As a consequence,

k2 will move towards f∞. Since every room is closer to the out-

side than to any other room, every face in the complex will be

assigned to the cluster of k2, with the exception of the faces that

belong to the room containing k1.

The use of the k-medoids algorithm, which requires the clus-

ter centers to be faces of the complex, further increases the ro-

bustness and the stability of this partitioning process. This is

because a cluster center will either be a face inside a room (and

hence the cluster is strongly bound to this particular room) or

a face close to f∞ (possibly, f∞ itself). We have also experi-

mented with an alternative formulation based on applying the

more traditional k-means clustering, where cluster centers can

correspond to arbitrary positions in the embedded space. We

discovered that k-means is much more dependent on the dif-

fusion parameters (in particular, on the diffusion time t) and

requires considerable adjustment of their values to yield correct

results.

To further prove the effectiveness of our algorithm we have

evaluated the quality of each split a posteriori. Let B =

{e1, . . . , en} be the set of edges that separate the two components

extracted in a single binary split. We define the split quality

Qsplit of B as follows:

Qsplit(B) =

∑n
i=1 w(ei) · length(ei)
∑n

i=1 length(ei)
, (4)

where w(e) denotes the coverage of e due to candidate wall seg-

ments and follows the definition provided in Eq. 1. This quality

function measures how solid the boundary between two adja-

cent clusters is in the range [0..1], where 1 corresponds to a

split along a perfectly solid wall. Note that the edge lengths act

here as weights, ensuring that each edge contributes to the split

cost proportionally to its importance.

The quality of the splits generated in the sequence of Fig. 8

is shown as a bar plot in the inset of the same picture. The

splits actually performed by our algorithm are identified by the

black numbers. According to the quality measure, each of those

splits generates a boundary that corresponds to an actual wall

with high confidence. On the other hand, forcing a further (hy-

pothetical) split when the algorithm would normally terminate

would yield a boundary with clearly low quality. These hypo-

thetical splits are denoted by light gray numbers. Since we are

Figure 9: Large rooms with an elongated shape such as corridors may be incor-

rectly split into multiple clusters (top). By applying our robust post-processing

step, we are able to detect these cases and recover the correct shape of any

over-segmented room (bottom).

taking the viewpoints into account to check for the proper ter-

mination depth, no threshold has to be set to avoid such bad

splits.

5.5. Post-processing

The clustering algorithm works well as long as the diffu-

sion process correctly embeds in spatial proximity those faces

that belong to the same room. However, this assumption may

fail when the input environment contains long corridors. This

means that the specified diffusion time was not sufficient to

propagate the affinity values between the distant faces of such

a structure. Hence corridors may be incorrectly split into sev-

eral separate clusters (see Fig. 9), as reported in our previous

paper [3]. This issue could be solved by increasing the diffu-

sion time t in Eq. 3, which would allow affinities to propagate

across the whole extent of the over-segmented room. How-

ever, to avoid the need for an interactive and adaptive tuning

of this parameter, we have designed a simple yet effective post-

processing technique that is based on explicitly checking the

goodness of the boundary between adjacent cluster. This is

based on the fact that such incorrect splits can be easily and

robustly detected since they do not correspond to an actual wall

segment.

We first discover the adjacencies between the detected clus-

ters of 2D cells, that is, we find the pairs of clusters whose

boundaries touch in at least one edge. For each such pair, we

compute the (possibly multiple) connected components of the

shared boundary B, then evaluate the split quality Qsplit(B) as

defined in Eq. 4.

We merge two adjacent clusters if for each of their bound-

ary segments Qsplit is lower than a threshold, that we have set

to 0.5 in our experiments. This method robustly and correctly

merges connected structures like the corridor in Fig. 9. Note

that, in practice, the choice of this threshold did not require
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any fine tuning, as we have observed a clear-cut distinction be-

tween erroneous and correct splits. In all our experiments, fake

boundaries always had Qsplit < 0.22, while real ones always had

Qsplit > 0.97 (as shown in the plot of Fig. 8).

6. Model Reconstruction

Eventually we reconstruct the 3D polyhedra from the de-

tected room clusters. First of all, the boundary edges of each

cluster are extracted, merging adjacent edges that are collinear.

Then, the full 3D extent of the walls is recovered. We could

simply extrude the 2D boundary edges vertically, but we choose

a different approach based on robust statistics to obtain a more

accurate estimation of the wall parameters.

For each edge in the boundary of a cluster, we access the pro-

jected candidate walls Ck associated to the edge (see Sec. 5.1)

and we select the points of the corresponding 3D patches. A ro-

bust plane fitting algorithm is then applied to these points to ex-

tract the final wall planes. We use Iteratively Re-weighted Least

Squares (IRLS) [4] instead of the Least Median of Squares

(LMS) algorithm, which has been previously used for plane

fitting [3]. Like LMS, IRLS is known to be robust with re-

spect to outliers, but is much faster to compute (between 11–

18× in our experiments, see Tab. 2). The IRLS method con-

sists in solving a sequence of weighted least squares problems

until convergence; robustness is achieved by using a suitable

weight function, chosen so that outliers (which correspond to

large residuals) have a reduced influence in the estimation. In

our experiments, we used the function w(x) = 1/|x| as weight

function for the IRLS, which corresponds to minimizing the L1

norm of the residuals. As shown by the error plots in Fig. 11,

the two methods achieve a comparable accuracy.

We use a similar fitting procedure for reconstructing the floor

and ceiling planes. Since we assume that floor and ceiling

are planar and orthogonal to the up-vector, we find during the

patches extraction the two horizontal patches Pfloor and Pceil

with respectively minimum and maximum z value (Sec. 4.1).

To increase the accuracy and robustness of the estimation, we

employ the following strategy to fit the final planes. GivenPfloor

(respectively Pceil), we take the horizontal patches whose dis-

tance fromPfloor (andPceil) is less than a threshold and use their

points as support set for an IRLS fit. Note that throughout this

process for practical purposes we only consider patches with a

diagonal larger than 50cm.

The polygons of the final polyhedra are obtained by inter-

secting pairs of adjacent wall planes with the floor and ceiling

planes. An example of the complete room polyhedra resulting

from a given segmentation can also be seen in Fig. 2(d).

7. Results and Discussion

Qualitative evaluation. We have tested our algorithm on 5 dif-

ferent real-world datasets. These datasets were acquired by

LIDAR laser range scanning, using a sampling resolution of

24mm at 10m. The scanned input models and the resulting room

polyhedra are shown in Fig. 13.

Figure 10: To test our algorithm we created three synthetic models (SYNTH

1 in the top, SYNTH 2 in the middle and SYNTH 3 in the bottom) of indoor

environments, all representing office settings. In these models we selected a set

of positions that were used as viewpoints in a virtual 3D scanning process. The

stacked pictures on the right show different detail views of the original model

(top) and of the corresponding virtually scanned model (bottom).

Datasets ROOM 1 and ROOM 2 (shown in Fig. 13(a) and

Fig. 13(b), respectively), contain two single rooms. However,

they represent exceptionally difficult settings for the laser scan-

ner, as the large window fronts result in many reflection arti-

facts and thus in a huge number of outliers. Nevertheless, our

algorithm is able to correctly extract the shape of the rooms.

The other three datasets (OFFICE 1, OFFICE 2 and OF-

FICE 3) represent different office environments which are com-

posed of corridors with attached rooms. The highly anisotropic

shape of the corridor in OFFICE 1 (Fig. 13(c)) is reconstructed

correctly and separated from the neighboring room. Thanks

to our post-processing step, the over-segmentation problems

that affected our original pipeline [3] are solved. OFFICE 3

(Fig. 13(e)) represents a larger environment composed of sev-

eral rooms, all attached to a central corridor. While OFFICE

3 exhibits a clear arrangement of the rooms, the environment

in OFFICE 2 (Fig. 13(d)) has a more complex and irregular

structure, lacking a single central corridor and containing some

empty space completely surrounded by other rooms. Despite

these challenges, all the rooms are correctly detected and re-

constructed.
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Figure 12: Quantitative evaluation of the results for dataset SYNTH 1. Color-

coded visualization of the maximum fitting error for the visible wall faces.

The colors show that our reconstruction achieves very good accuracy, with the

largest errors being around 3mm. A detailed visualization of the error for each

reconstructed face is shown in the bar plot in Fig. 11.

the accuracy of the reconstruction is very good. By analyzing

the more detailed plot in Fig. 11, which shows the errors for

all the faces of the model, one can see that the maximum error

exceeds 3mm for a few faces only, while for most of them is

well below 1mm.

Real 3.086m 6.170m 5.700m

Model 3.090m 6.160m 5.689m

Disp. 4.81–4.91cm 5.71–7.51cm 3.22–5.11cm

Table 3: Quantitative evaluation for dataset ROOM 1. For each pair of parallel

walls we show their real-world distance (Real), acquired using a laser measur-

ing device, and their distance in the reconstructed model (Model). The last row

(Disp.) shows, for each wall plane in each pair of parallel walls, the dispersion

of the points used for the fit about the plane itself. The discrepancies between

real-world and reconstructed distances are proportional to the dispersion values.

Performing a quantitative evaluation for real-world datasets

like ROOM 1 is more problematic, as a reliable ground-truth

model of the acquired environment is unavailable. We there-

fore evaluated the distance between pairs of parallel walls of the

real environment using a manually-operated laser distance mea-

sure device. We then compared the measurements with the dis-

tance between the corresponding wall faces in the reconstructed

model. The results shown in Tab. 3 confirm that also on real-

world inputs our method is able to achieve very good accuracy

levels.

8. Conclusions and Future Work

We have presented a system for the automatic reconstruction

of complex indoor architectural environments that can correctly

partition the input model into the appropriate number of sepa-

rate rooms. Our method is robust against clutter and occlusions,

(a) (b) (c)

Figure 16: Some limitations of our reconstruction approach. Environments

with slanted walls (a) and different ceiling heights (b) can not be faithfully

reconstructed by our pipeline. We assume that each room is covered by at least

one scan taken inside it; the rooms attached to the corridor in (c), which are

partially covered by scans taken in the corridor, violate this assumption and are

not recognized by our reconstruction method.

and performs well in real-world scenarios. With respect to the

previous solution [3], we have improved the accuracy of the

room detection as well as the performance of our method. We

also added an in-depth analysis of our algorithm and provided

both additional visual and quantitative evaluations of a wider

range of more complex models.

Figure 17: Results produced by our iterative room partitioning algorithm for

the case of an environment with a room completely contained in another room

(cluster of red faces in the bottom picture). Note that, in the top picture, the

ceiling has been removed to improve visual clarity.

Most of the limitations of our approach are directly linked to

our starting assumptions – we target only buildings that have

planar, vertical walls and horizontal ceilings; structures that

can not be fully explained with a 2D cell complex, such as

slanted walls (see Fig. 16(a)), ceilings of different heights (see

Fig. 16(b)) or structures like staircases can not be correctly re-

constructed by our pipeline. We focus on the robust extraction

of the basic room shapes, and do not attempt to recognize fine

architectural details. We rely on the assumption that each room

contains at least one scan position; rooms that do not satisfy

this condition (Fig. 16(c)) can not be extracted by the iterative

clustering procedure. All environments shown in the results

are composed of rooms which share a border with the outside
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(i.e. the cluster K∞ of unlabeled faces, see Sec. 5.4); additional

tests (see Fig. 17) showed that our method can reconstruct an

environment containing one room completely contained in an-

other, but more complex cases (e.g. multiple, adjacent rooms

surrounded by other rooms) should be investigated in more de-

tail in future work.

We view our algorithm as a first step towards going beyond

simple geometric reconstruction to extract semantic informa-

tion from the input dataset. We plan to combine this with meth-

ods for the automatic detection of indoor objects like furni-

ture [32] in an indoor reconstruction pipeline. As a future goal

we would like to create a fully parametrized architectural CAD

model that could serve as a basis for subsequent editing work

of a designer. We plan to incorporate general slanted walls,

curved surfaces and other typical architectural structures into

our pipeline. Finally, we are interested in extending our virtual

scanning prototype so that it realistically models the behavior

of time-of-flight scanners.
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(a) (b) (c)

(d) (e)

Figure 13: Reconstruction results for real-world datsets. From top to bottom, left to right: ROOM 1 (a), ROOM 2 (b), OFFICE 1 (c), OFFICE 2 (d) and OFFICE 3

(e). Notice that our algorithm can cope well with large-scale outlier artifacts originating from reflections (e.g. ROOM 2) as well as with complex room arrangements

(e.g. OFFICE 2). For clarity of visualization, the input models are shown with the ceiling removed.
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(a) (b) (c)

Figure 14: Reconstruction results for the SYNTH 1 (a), SYNTH 2 (b) and SYNTH 3 (c) datasets. It can be seen how our algorithm can successfully deal with

environments that do not satisfy the Manhattan-World assumptions and that contain rooms with complex and irregular boundaries. Notice the presence of scattered

points outside of the windows, added to the virtual scans to simulate the artifacts from laser rays hitting reflective surfaces (e.g. glass). As in Fig. 13 we have

removed the top part of the input model for the sake of clarity.

Figure 15: Reconstruction results for dataset SYNTH 1 corrupted with increasing levels of measurement noise (σnoise, in the vertical axis) and registration error

(errreg, in the horizontal axis). Although the combined effect of high noise and registration error (bottom-left part of the grid) leads to artifacts in the reconstructed

models, our method is able to correctly detect all the rooms of the environment.
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