EUROGRAPHICS 2014 / B. Lévy and J. Kautz
(Guest Editors)

Volume 33 (2014), Number 2

ExploreMaps:
Efficient Construction and Ubiquitous Exploration of
Panoramic View Graphs of Complex 3D Environments

M. Di Benedetto', F. Ganovelli!, M. Balsa Rodriguez?, A. Jaspe Villanueva?, R. Scopigno' and E. Gobbetti?

1Visual Computing Group - ISTI-CNR, Italy
2Visual Computing Group - CRS4, Ttaly

-)

Figure 1: We automatically transform a generic renderable model (left) into a simple graph representation named ExploreMaps (center),
where nodes are nicely placed point of views that cover the visible model surface and arcs are smooth paths between neighboring probes. The
representation is exploited for providing visual indexes for the 3D scene and for supporting, even on low-powered mobile devices, interactive
photorealistic exploration based on precomputed imagery (right).

Abstract

We introduce a novel efficient technique for automatically transforming a generic renderable 3D scene into a
simple graph representation named ExploreMaps, where nodes are nicely placed point of views, called probes, and
arcs are smooth paths between neighboring probes. Each probe is associated with a panoramic image enriched
with preferred viewing orientations, and each path with a panoramic video. Our GPU-accelerated unattended
construction pipeline distributes probes so as to guarantee coverage of the scene while accounting for perceptual
criteria before finding smooth, good looking paths between neighboring probes. Images and videos are precomputed
at construction time with off-line photorealistic rendering engines, providing a convincing 3D visualization beyond
the limits of current real-time graphics techniques. At run-time, the graph is exploited both for creating automatic
scene indexes and movie previews of complex scenes and for supporting interactive exploration through a low-DOF
assisted navigation interface and the visual indexing of the scene provided by the selected viewpoints. Due to
negligible CPU overhead and very limited use of GPU functionality, real-time performance is achieved on emerging
web-based environments based on WebGL even on low-powered mobile devices.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I1.3.2]: Graphics Systems—

Distributed/network graphics; Computer Graphics [1.3.7]: Three-Dimensional Graphics and Realism—

1. Introduction

With the widespread availability of mobile graphics terminals
and WebGL-enabled browsers, 3D graphics over the Inter-
net is thriving. Thanks to recent advances in 3D acquisition
and modeling systems, high-quality 3D models are becoming
increasingly common, and are now potentially available for
ubiquitous exploration. In current 3D repositories, such as
Blend Swap, 3D Café or Archive3D, 3D models available for
download are mostly presented through a few user-selected
static images. Online exploration is limited to simple orbit-

(© 2014 The Author(s)
Computer Graphics Forum (©) 2014 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

ing and/or low-fidelity explorations of simplified models,
since photorealistic rendering quality of complex synthetic
environments is still hardly achievable within the real-time
constraints of interactive applications, especially on on low-
powered mobile devices or script-based Internet browsers.
Moreover, navigating inside 3D environments, especially on
the now pervasive touch devices, is a non-trivial task, and
usability is consistently improved by employing assisted nav-
igation controls [CONOS]. Spatially indexed photographic
imagery, popularized by Internet systems such as Google

Di Benedetto et al. / ExploreMaps

StreetView and Bing Maps StreetSide, is, on the other hand,
proving to be an effective mean for generating compelling in-
teractive virtual tours of real locations. These systems achieve
visual quality by presenting captured imagery rather than syn-
thetic reconstructions, and simplify interaction by exploiting
connections among captured images to guide the user. Design-
ing such guided walkthroughs for synthetic 3D environments
manually is, however, a hard and time-consuming task.

In this work, we introduce an approach aimed at automati-
cally providing a richer experience in presenting 3D models
on dedicated web sites. The method builds on a novel efficient
technique for transforming a generic renderable 3D scene into
a simple graph representation, dubbed ExploreMaps, where
nodes are nicely placed panoramic views, called probes, and
arcs are smooth panoramic video paths connecting neighbor-
ing probes. Our GPU-accelerated unattended construction
pipeline distributes probes so as to guarantee complete cover-
age of a generic scene, before clustering them using percep-
tual criteria, determining preferential viewing orientations,
finding smooth good looking connection paths, and reorder-
ing probes in a linear arrangement suitable for thumbnail-bar
presentation. Probe images and path videos are then com-
puted with off-line photorealistic renderers, overcoming real-
time rendering limitations. At run-time, the graph is exploited
both for generating visual scene indexes and movie previews,
and for supporting interactive exploration through a low-DOF
assisted navigation interface. Usability and sense of presence
are increased by leaving orientation and field of view free
when looking at the scene from a probe position, and gently
converging to the closest target “good orientation” during
transitions. Due to negligible CPU/GPU usage, real-time per-
formance is achieved on emerging WebGL environments
even on low-powered mobile devices (see Fig. 1). Our core
contributions are:

e View sampling: a novel, unattended, GPU accelerated
visibility-driven technique for sampling renderable sur-
face models into a set of panoramic views, and a novel
approach for determining a good set of representative
panoramic views for general 3D scenes, extending the
scope of current viewpoint orbiting solutions [SLF*11];

Path creation: a novel method for determining view
connectivity, a purely visibility-guided GPU accelerated
method for defining smooth good-looking connecting tra-
jectories, and a technique for exploiting the graph struc-
ture to reorder the views in a linear arrangement well
suited for exploration through thumbnail bars.

Ubiquitous exploration: a mobile WebGL-friendly sys-
tem able to guide users and sustain interactive perfor-
mance while presenting photorealistic environments.

The method is robust, completely automatic, and applica-
ble to many kinds of complex renderable scenes, materials,
and lighting environments. The major limitation of the ap-
proach is, by design, the restriction of viewing positions to
the precomputed probes and paths. This limitation, however,
allows us to replace the problem of streaming 3D scenes

with the streaming of images and videos, precomputed with
movie-quality rendering systems without hard timing con-
straints, and the problem of 3D navigation in space with a
much simpler graph exploration, improving usability through
a low-DOF assisted navigation interface and a graph-based
visual indexing of the scene.

2. Related work

In the following, we will briefly discuss the approaches
that are most closely related with our work. For further de-
tails, we refer the reader to established surveys on massive
model rendering [DGY07, GKY08, YGKMO08], image-based
rendering [SCKO07], camera control [CONOS], view plan-
ning [SRRO3], and mobile graphics [CPAMOS].

While in recent years, research efforts have produced
systems capable of rendering moderately complex environ-
ments on the web and/or mobile devices [MLL*10,NKB10,
BGM*12, GMB*12, BGMT13], real-time constraints limit
achievable quality to moderate geometric complexity, simple
shading models and/or baked illumination. We focus instead
on supporting photorealistic views of complex scenes through
precomputation, and on exploiting them both for visual scene
indexing and constrained navigation.

Using image-based techniques to remove limitations on
scene complexity and rendering quality for interactive appli-
cations, as well as to improve application usability is an old
idea, that dates back at least to the branching movies of the
80s [Lip80] and the navigable videos and environment maps
of the 90s (e.g., [Che95, KFLO1]). More recently, these ap-
proaches have flourished in the context of applications that ex-
ploit camera pose (location, orientation, and field of view) and
sparse 3D scene information to create new interfaces for ex-
ploring physical places by browsing large collections of pho-
tographs or videos [SSS06, Vin07, KCSC10, TKKT12,SS12].
While much of earlier research has focused either on au-
thored paths or on pre-acquired large photo/video collections,
with an emphasis on view interpolation, image-based ren-
dering from captured samples, or interfaces for navigation
among large sets of precomputed images, we focus instead
on how to efficiently and automatically create a set of rep-
resentative views and connections starting from a given 3D
environment, and on how to increase the sense of presence
during constrained navigation. Since we restrict the possible
camera positions (but not orientations and fields of view),
we can side-step the complex problem of computing pixel-
accurate viewpoint interpolations in general shading envi-
ronments [SKG*12]. Our method is therefore applicable to
scenes including effects such as participating media, reflec-
tions, and refractions. The question of what are good views
of a 3D object has been addressed by many researchers in per-
ception, computer vision and computer graphics. In this work,
we optimize view placement (and preferential orientations)
by combining a perceptual metric [SLF*11] with our new
criterion based on viewpoint stability and scene coverage.

Placing viewpoints to guarantee a complete and accurate

(© 2014 The Author(s)

Computer Graphics Forum (© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Di Benedetto et al. / ExploreMaps

sampling is an extensively studied computer vision prob-
lem [SRRO3]. Reconstructing a “virtual” object is a differ-
ent problem, since there are no physical constraints on the
field-of-view, position, orientation, and motion of the virtual
sensors, and acquisition errors are limited to the discretiza-
tion done by rasterization. View selection in this context
has mostly been studied in image-based rendering literature.
Most techniques use a fixed set of views [Rap98, ABB*(07],
leading to gaps or holes for non-trivial objects. Fleishman
et al. [FCOL00] and Vazquez et al. [VFSHO2] introduced
adaptive techniques for covering polygonal models, but re-
quire the prior definition of a “walking zone” for bounding
camera positions. Our approach, applicable to generic scenes,
bears similarities with search-based methods, which use opti-
mization criteria based on expected entropy [WDH"06], visi-
bility [WMO3], or silhouettes [Abi95]. We propose a novel
visibility-based approach based on panoramic images and
an optimized GPU implementation, combined with a view
clustering and selection scheme. Voronoi-based sampling is
employed by Wilson and Manocha [WMO3], which, however,
use a greedy optimization framework based on the detection
of “skin edges” and a simplified encoding in textured depth
meshes, limiting the approach to architectural scenes.

3. Creating the ExploreMaps graph
The input scene is assumed to have a geometry, used for
view discovery, as well as a shaded representation, used for
high quality rendering. The only assumptions made on the
geometric representation is that its bounding box is known,
that it can be rasterized producing depth and normal buffers,
and (optionally) has a preferential up vector (+Y by default).
The explicit definition of the up direction can be removed by
employing an unsupervised upright direction solver for man-
made objects [FCODS08,JWL12]. The shaded representation,
instead, is any description of the same scene that can be given
as input to an external high-quality renderer. In the simplest
form, it consists of the geometric representation enriched
with lights and material properties.
MaximizeSeenSurface (v) {

do{

Snew = NewSurface (w);
b = Barycenter (Snew);

VirtualExplora
v = PlaceFirst
WV += MaximizeSeenSurface(v);
while (not T mplete (V)) |

v = PlaceNewProbe (); v = MoveTo(b);
V += MaximizeSeenSurface(v); } while (not Conwverged());
} return v;

} ;

Listing 1: Placing a set of probes
to cover all visible surfaces

Listing 2: Moving a probe to
maximize the new surface seen

3.1. Discovering the scene

We start by formally defining the problem of exploring a
scene given only its bounding box and an abstract method
for rasterizing the geometry. Let v = {vy....,v,—1} be a
set of n probes, S the entire input surface to be discov-
ered, S(v;) C S the portion of surface seen by probe v;, and
S(v) = Usy,ey S(v;). With this notation, the exploration prob-
lem is posed as the problem of finding a set of probes v such

(C) 2014 The Author(s)

Computer Graphics Forum (€) 2014 The Eurographics Association and John Wiley & Sons Lid.

that § C §(v). We say that a set of probes satisfying this condi-
tion is complete, which means it sees the whole input surface.
Note that we do not have prior knowledge of S, which must
be discovered by the algorithm.

mm oceluded volume Ov(.)
I‘ —— occluded surface Os(.)

I S " | — visiblesurface g
S g \ visible surface ()
! _|
vy vl W {vo,v1}
Figure 2: Occlusion surfaces and occlusion volumes.

Incremental algorithm. Our incremental algorithm, see List-
ing 1, starts with an empty set of probes and, at each iteration,
adds a new probe and optimizes its position so that it sees a
portion of the surface not visible from previous probes, until
the coverage is complete”. Fig. 2 illustrates a 2D example
of an object, with two probes, the portion of surface seen,
and the occluded surfaces Os(v;). i.e., the surfaces joining
the discontinuities of S(v;). The occluded volume for a probe,
Ov(v;) is the (infinite) region of 3D space non visible from
v; and the occluded volume from a set of probes is the inter-
section of the single viewing volumes Ov(v) = [,,ey Ov(v;).
Finally the occluded surfaces of a set of probes, Os(v) is the
union of the single occluded surfaces intersected with the oc-
cluded volume: Os(v) = U, ey Os(v;) N Ov(v). The occluded
surfaces are typically used as candidate locations to place the
next probe [WMO03] as a way to look “behind the corner". It
is easy to prove that if we found a set of probes v such that the
occluded surface is empty, it means that all the reachable sur-
face is seen by some probe, that is: if Os(v) = @ then S(v) = S.
Since we are interested only on the surface reachable from
the outside, placing the first probe outside the scene bounding
box is a sufficient initialization (PlaceFirstProbe()).

NN N N
G\ 20)\ e) i

Figure 3: [llustration of the view optimization algorithm. (a) Probe
vy is added on the occluded surface Os(vy); (b) the new surface
portion seen by v and its barycenter b are shown; (c) the probe is
moved 1o b, and visible surface and barycenter are recomputed; (d)
the probe ends up on the barycenter of the surface seen.

Finding a new probe position. The position for placing a
new probe (PlaceNewProbe()) is chosen at random in the
current occluded surface. This is a common choice for many
view planning strategies, as it guarantees that some new por-
tion of the surface that will be seen. We then start an iterative
optimization algorithm, described in Listing 2. At each step,
the algorithm tries to maximize the area of the surface seen by
the new probe and unseen by previous ones. This is done by

T Note that, while in this paper we focus on complete automation,
the method could also start with user-defined set of probes, e.g., to
force inclusion of semantically relevant/nice shots in the graph

Di Benedetto et al. / ExploreMaps

iteratively moving the probe position towards the barycenter
of the surface visible from its current position (MoveTo(b)).
If this is not possible because the segment connecting the
current position and b intersects the surface, the probe is put
halfway between the current position and the intersection
point. This strategy, reminiscent of Lloyd relaxation [L1082],
ends when an equilibrium position is reached, i.e., when the
barycenter of the surface seen is the same as current posi-
tion itself (up to a small threshold). The approach implicitly
assumes that the probe is at the interior of a closed surface,
e.g., inside a building, since, otherwise, the location of the
barycenter of the unseen surface would tend to be too close
to the surface itself, or even collapse onto it. We therefore
artificially bound the scene with a spherical background ob-
ject, used by the discovery algorithm, but ignored in the final
panoramas. Figure 3 illustrates the positioning of a probe,
from its placement on the occluded surface to the conver-
gence of the algorithm. The situation depicted in the example
is fairly common. We can see that a probe “entering” in a
room tends to position itself at the room’s center. Note that
not all the surface seen by the new probe during the first steps
of the optimization will be visible also from the final position
(see the portion indicated by a red arrow in Fig. 3.(d)).

3.2. Optimizing the set of probes

Our exploration algorithm finds a set of probes that globally
guarantee the full coverage of the reachable surface (see Fig-
ure 4, left). While in principle we could build a graph over
this set, we infer a new graph that also takes into account
perceptual criteria, in order to enhance user experience. This
is done by clustering the set of probes obtained by the explo-
ration phase and replacing each cluster with a representative
probe so that the resulting graph is almost equivalent in terms
of coverage but better in terms of browsing.

Figure- 4: Left: result of Virtual Exploration; middle: two clusters
highlighted; right: synthesis of the clusters.

Probe Clustering. The clustering is performed by applying
the Markov Cluster Algorithm (a.k.a. MCL [VDO08]), with
default power and inflation parameters (¢ = 2, r = 2) to the
coverage graph. MCL is a well known randomized algorithm
that finds out natural clusters of nodes in a graph. The key
idea is that when you take random walks starting from a
node, it is more likely that you stay in the same cluster of the
starting node than you jump to another cluster. MCL can use
weights on the arcs (i.e., the weight determines how likely
the arc is crossed in the random walk), and we assign the
weights as the amount of overlap in visible surface between
the two probes connected by the arc. This will tend to cluster
together probes that see the same area. The algorithm termi-
nates when it reaches a steady state, obtaining a number of

clusters cg . ..c¢,,. Two examples of these clusters are shown
on Figure 4 (middle). In a second phase, we find the synthesis
of each cluster ¢;, i.e., a single new probe that sees most of the
surface seen by all the probes in the cluster, while providing
a significant panorama in terms of perceptual criteria.

Stability Criterion. Secord et al. [SLF*11] introduce crite-
ria for assessing the quality of a view with the purpose of
automatically defining the best point of view in a percep-
tual sense. However, there are important differences with
our case, because we must support general object viewing,
including exploration of indoor scenes, while the metric pro-
posed in [SLF*11] is only concerned with the object-in-hand
paradigm, assuming that the object silhouette 1s entirely visi-
ble. This means that attributes concerning the projected sur-
face area, silhouette and semantic (see [SLF"11]) are hardly
applicable in our case, and the linear goodness function they
propose would reduce to:

G(v) = a MaxDepth(v) + B (1 - f h’(z)zdz)

where Maxdepth is the maximum depth value, H is the nor-
malized histogram of the depth values and & and 8 are [0, 1]
weights to combine the two metrics. However, it is easy to
verify that these criteria alone could lead to unnatural posi-
tions. A clear example is a point of view “behind” a column,
from where there may be large maximal depth and uniform
depth distribution, but where the feeling is to hide behind a
column and not exploring the scene. Therefore, we weight
G(v) with the srabiliry St(v) of the point of view v, leading
to a goodness function

Gs(v) = G(v) - St(v)

We say that a point of view is stable if the view does not
change much with respect to the neighborhood. In the previ-
ous example, it is clear that a position behind a column (that
is, near to an occluder) is not stable because a small displace-
ment would unveil a large part of the scene. In order to for-
malize this idea, we define a distance function between two
points of view v and w as A(v,w) = max{¢(v,w). ¢ (w,v)},
where ¢ (v, w) = Diff(Py(S(v)),D(w))). S(v) is the 3D sur-
face seen from v, P,(.) is the projection of a 3D surface on
w, D(.) is the depth map from a point of view and Diff(.,.)
is the number of different depth values in the comparison
between two depth maps. We thus define the stability of a
point as 57(v) = max,,c () {A(v.w) }, where N(v) is a set of
point near v. In our system we used the points distributed on
the sphere centered at v with radius equal to the distance of
the near plane used to produce the panoramas.

Probe synthesis. The synthesis step starts from the position
of the probe within the cluster that has the largest coverage
of the surface seen by all probes in the cluster. We then per-
form a local randomized search using a simulated annealing
approach, which applies small random perturbations of a
probe’s position, with an objective function that combines
the coverage and the perceptual metric using a weighted av-
erage. Upon convergence, using the same perceptual metric,

(©) 2014 The Author(s)

Computer Graphics Forum () 2014 The Eurographics Association and John Wiley & Sons Lid.

Di Benedetto et al. / ExploreMaps

we determine a small set of orientations for each probe that
will serve both as preferred arrival orientations when the user
move to the probe, and as the look-at orientation used when
generating thumbnails to represent the probes in a navigation
application. Best orientations for each view are selected by
finding the dominant peaks in the goodness function with
mean-shift clustering [CMO02]. The up vector for the dataset,
if present, is used to avoid upside-down views.

3.3. Connecting probes

Once we have the new set of probes, we have to define which
probes must be connected with an arc and the geometric
path that connects them. One simplistic choice would be to
connect two probes if they are mutually visible from each
other. This solution is definitely not acceptable, since it would
drastically reduce navigation possibilities. For instance, see
Fig. 5, a probe in a room may not necessarily directly see a
probe out of the window, nonetheless the transition from the
first to the second makes perfect sense. More generally, view
planning does not even guarantee that nearby probes are in
general mutually visible. A smarter choice would be connect
probes that see a common point in the surface. Even though
this strategy would perform much better, it is easy to see that
a number of common cases break the same rule (see, e.g., the
same example in Fig. 5). We have thus decided to connect two
probes if there exists a point in space that is visible from both
of them. which generally leads to a meaningful set of arcs
(see Figure 5 right and accompanying video). The technique
for finding smooth feasible paths is explained in Sec. 4.2.

connecting
wand v

v
Figure 5: Left: Two probes are connected if there exists a point in
space that is visible from both of them. Right: the path graph found
for the German house example.

3.4. Reordering probes

The final result of our exploration algorithm is a graph repre-
sentation of the input scene in terms of probes and paths. We
finalize graph construction by reordering nodes in a scene-
coherent way, by computing a weighted minimum linear ar-
rangement (MLA) of the probes, i.e., a permutation IT of the
probes such that the cost ¥;jeg wij [TI(7) —TI(j)| is minimal,
where w;; is the reciprocal of the length of the path connect-
ing probe i to probe j. Intuitively, this ordering will attempt to
cluster together the nodes that are close-by and connected by
paths (see Fig. 6). We use this ordering at run-time to present
nodes in a thumbnail bar using a logical exploration order.
Since the MLA is known to be NP-hard, we heuristically

approximate the solution using a multilevel solver [SRB0O6].

(C) 2014 The Author(s)

Computer Graphics Forum (€) 2014 The Eurographics Association and John Wiley & Sons Lid.

Qriginal

s
Figure 6: Linearly arranged graph for the Sponza model. The opti-
mized layout (bottom) reorders probes in a more coherent inanner;
moving nearby probes that are closely connected by short paths. This
ordering is used for thumbnail-bar navigation (see Sec. 5).

4. Efficient GPU Implementation

The different phases of ExploreMap construction have been
mapped to an efficient and robust GPU implementation,
whose major components are probe placement (Sec. 4.1)
and path generation (Sec. 4.2).

4.1. Probe placement

The structure of the GPU implementation of our exploration
algorithm is illustrated Fig. 7. Although the GPU algorithm
follows the scheme presented in Listing 1 and Listing 2, there
are several technicalities that need to be addressed.

MaximizeUnseen |_|
LX]
| Render (v)

ViEV
Wi EW
i |Suhtract(03(v] L, Ov(v;)
b=Barycenter(S(v)) ¥
n[v+=
* ‘@ *RND(Os(v
g e

Figure 7: Flowchart of the GPU implementation of our Virtual
Exploration algorithm,

PlaceNewProbe

| Os(v;)=Generatels (v)

A panoramic view is composed of 6 renderings from the
probe position so as to create an environment cube map, and
the surface S(v) is the set of 3D points obtained by unproject-
ing all the fragments belonging to the renderings in v. In the
following, when we refer to operations on the (panoramic)
views, the intended meaning is to all their 6 sub-views.
Render. The function Render (v) performs the rendering
of the scene for each view with a render-to-texture (RTT) ap-
proach, producing a depth map D(v) and a normal map N(v)
of the acquired surface. These two maps are then analyzed
with a full-screen quad pass to generate a discontinuity (or
Jump) map J(v), a map of boolean values where rrue indicates
the border of the occluded surface Os(v). We perform a full-
screen pass to find out in parallel, for each acquired pixel, if it
is on a discontinuity by testing if its projection in world space
is more distant than a threshold 7, from the plane defined
by its neighbor pixels and their respective normals. This is

Di Benedetto et al. / ExploreMaps

slightly more sophisticated than just testing the difference in
the depth map or the distance in world space, for it takes into
account the local orientation of the surface with respect to
the view direction, as shown in Fig. 8.

1a0dmars’

Figure 8: The sample p is considered on a discontinuity if it is
[farther than Ty, from any of the planes built with its adjacent samples
positions and normals.

MaskOut. Once D(v), N(v) and J(v) have been produced,
we need to find out how much of the acquired scene sur-
face is seen only by the new probe. This is done by using a
shadow map-like approach, treating the surface acquired by
all previous probes as a shadow caster on the new, shadow
receiving probe. The test, referred to as Maskout (v, v;),
is asymmetric, meaning that it only determines which frag-
ments of S(v) will be lost in the comparison against v;. This
phase starts by generating a mask map M(v) where all pix-
els are set as valid, e.g., not masked. Then, with a series of
full-screen passes, we try to invalidate the pixels belonging
to already acquired surfaces. For this purpose, we use the
depth map D(v;) of previous probes as a shadow buffer and
perform the visibility test with the corresponding pixel of
the current probe in D(v). Note that since each view consists
of 6 rendering, MaskOut (v, v;) would require, in a trivial
implementation, 36 renderings to be completed. We optimize
the operation by skipping non-intersecting frustum pairs.

Barycenter. To compute the barycenter of non-masked parts
of the scene seen by the probe (Barycenter (S(v))), we
consider D(v) as a range map whose regular tessellation form
the acquired scene surface. A full-scene pass is used to gen-
erate a barycenter map B(v) that will contain, at each pixel
(x,¥), the barycenter of a surface quad obtained tessellating
the samples (x+ &,,y+ &) &;.8, = 0,1 of D(v). Note that
only the newly seen surface must contribute to the barycenter
computation, and quads over discontitnuities must not be
taken into account (they are no other than the occlusion sur-
face of the view). To this purpose, we access the discontinuity
map J(v) and the mask map M(v) to ignore the contribution
of quads that contain at least one vertex classified as a discon-
tinuity or masked out. At the end of this process, every pixel
in B(v) will contain its associated, area-weighted barycenter
by, or zero if it has been rejected due to discontinuities or
masking. Calculating the barycenter of the acquired surface
then consists of summing all values in B(v): this is accom-
plished by applying a parallel reduction on B(v) with the sum

operator, easily done by generating mipmap pyramids. The
barycenters of the six views, thus contained in the top-level
1 x 1 pixel maps, are then read back on the CPU and summed
to produce the final probe barycenter.

Converged. Convergence is tested using the relative length of
the movement from the current probe position to its barycen-
ter and variation of acquired area. When one of these quanti-
ties is below a given threshold (or a max number of iterations
has been reached), the probe terminates its exploration.

MoveTo. As explained, moving the position p of the probe
towards the barycenter b (MoveTo (b)) requires to test that
the segment connecting p and & does not intersect the surface,
i.e., they are in line of sight from each other. Luckily, this test
is trivial and only consists of projecting & on the depth map
D(v) and check if it is visible or in shadow.

Placing a new probe. The first step (GenerateOs (v))
consists of generating a sampling of the occluded surface
Os(v). This is done by explicitly generating a tessellation of
the occluded surface by means of a geometry shader. We issue
the rendering of a regularly tessellated grid with vertices asso-
ciated to samples in the map of discontinuities J(v). If at least
one of the is a jump, the geometry shader outputs all 3 ver-
tices by reading the depth values from D(v) and unprojecting
them in world space, otherwise the input triangle is discarded.
These surviving triangles are are no other than a tessellation
of the occluded surface Os(v). The output vertex stream is
recorded by the transform feedback into a buffer that is then
read back in CPU memory, where triangles are densely sam-
pled into a texture T (v). With the hardware used in our tests,
this proved to be faster than using tessellation and geometry
shaders to generate samples directly on the GPU. The second
step, (Subtract (Os(v), Ov(v;))), consists of erasing all
the samples outside the occluded volume, i.e., that are vis-
ible by at least one of the previous probes. Again, this is
accomplished with a shadow map-like approach: we first test
samples visibility using the depth map of previous probes,
then use a geometry shader and the transform feedback to
compact the samples list by eliminating visible ones. After
reading back the samples contained in the transform feedback
buffer, they are added to the occluded surface samples list
L. The starting position of a new probe is then selected by
randomly picking a sample from L. If L is empty, then the
whole occlusion volume has been carved and the set of probes
generated so far is complete.

iguré 9: Sampling of the occluded surface after the first probe is
positioned (left, shown as a red sphere), and after T probes (right).

Figure 9 shows probe positions (red spheres), surface seen

(€ 2014 The Author(s)

Computer Graphics Forum (€) 2014 The Eurographics Association and John Wiley & Sons Ltd.

Di Benedetto et al. / ExploreMaps

(dark green), and sampling of the occluded surface (magenta)
at two steps of our virtual exploration algorithm.

beol FindPath (v, u){
v_ourr = vy
dof
SetCamerasFrom(v_curr) ;
RenderSceneQffset ();
EnableCcclusionQuery () ;
RenderOffset (DM (u));
nfrag = FinishQOcclusionQuery();
if (nfrag > 0) {
p = CleosestTo_ul();

if (p == u) v_curr = u;
else v_curr += delta = Normalize(p-v_curr);
b
} while{ (v_curr != w) && {(v_curr != u));
return (v_curr == ul;

}

Listing 3: Finding a path between two probes.

4.2. Path generation

In order to check if there is a point that sees two probes v
and u, and to define a path connecting them, we adopt the
following GPU accelerated strategy (see Listing 3). From
the probe v, we render the scene, then enable hardware oc-
clusion queries and render a tessellation of the depth map
of u (DM(x)), assigning to each vertex of the tessellation its
distance from . If at least a fragment of the tessellation is
written in the buffer, the corresponding 3D point can be seen
both from u (because part of the depth map tessellation) and
from v (because the tessellation is rendered from v). We thus
know that the two must be connected. In order to find a path,
we can then move v by a fixed step towards the common point
closest to « and iterate the algorithm, as shown in Fig. 10.

A very important detail is that each rendering of the scene
must be done with an offset, in order to prevent the path being
closer to the surface than the value of the near plane used
when building panoramic views. We do this by using screen
space impostors. Let r be value for the near plane. We first
render the scene, then for each fragment we issue a quad with
side r in world space, which will be used to raycast a sphere
of the same radius in the fragment shader.

/f\v/

Lagy
Figure 10: Path optimization.

The path found with this algorithm could be already used
for computing the transition videos. In order to make it
smoother while preventing interpenetration with the scene
without drastically changing the path, we finally optimize the
path by solving a energy minimization problem:

min E. + E!cngrh + Epend + Eo‘}"f
implemented with a mass-spring system. While the first three

cnergy terms are simple springs connecting the path’s nodes

(©) 2014 The Author(s)

Computer Graphics Forum (&) 2014 The Eurographics Association and John Wiley & Sons Lid.

as shown in Fig. 10, the component E, ¢ is introduced to
prevent the optimized path to get too close to the surface, and
it is calculated by rendering the scene from the node position,
computing a repulsion force for each fragment (proportional
to the inverse of square distance) and summing up to obtain a
global vector force. It should be noted that we could further
include a more sophisticated perceptual metric here, in order
to optimize the panoramic images seen during the path. This
is not currently included in our system, since we are focusing
on short paths connecting probes that already meet quality
constraints. Fig. 5 right shows the path graph found for the
German house example.

offset surface

tessellation

of D)
—-—

Figure 11: (fe@ﬁ) Choosing the probes to connect with an arc. p
is the closest point to u that is also visible from v, therefore the
algorithm moves v towards p. The squares around v; and u represent
the near planes. (Right) A real case: on the left the tessellated depth
map, on the right the path (green), and the smoothed path (blue).

4.3. Creating a dataset

Once we have probes and paths, we can assemble the final
dataset, which consists of one panoramic image and one
thumbmail image for each probe and one panoramic video
for each path. These are created on a render farm using the
shaded model and an external photorealistic renderer, which
renders all probes and video frames as cube maps, and all
thumbnails as perspective images. Path timings are computed
using a slow-in/slow-out travel strategy (in this paper, 4s for
traversing the model in all presented results). Finally, an index
file describing the graph structure is generated.

5. Browsing explore maps

One of the main applications of ExploreMaps is supporting
ubiquitous browsing of complex illuminated models using
minimal CPU/GPU resources on web-based and mobile de-
vices. We describe here the basic features of our reference
JavaScript/WebGL implementation, which can run on any
WebGL-enabled web browser, as shown in Fig. 1. The view
graph is exploited both to provide a visual index of the entire
scene and to let users move within the environment. In auto-
matic mode, the viewer traverses the graph by random walk.
In interactive mode, the window is subdivided in three areas
(see Fig. 12): the central area shows the high-res spherical
panorama from the current probe position, while the right
thumbnail bar (probe bar) shows all available probes, and

Di Benedetto et al. / ExploreMaps

the bottom context-sensitive thumbnail bar (path bar) shows
selected probes reachable from the current position. Panora-
mas in the path bar correspond to the target probes of the
paths leaving the current probe. They are ordered based on
the angle between the current view direction and the path
direction, so as to always center the probe bar on the path
most aligned with the current view. Panoramas are initially
oriented towards their most preferential view direction. The
user is free to interactively change orientation with a dragging
motion both in the central panorama and in the small panora-
mas appearing in the thumbnail bars. In addition, the central
panorama is also zoomable. When a probe in one of the bars
is selected, the path leading to it, if available, is shown in the
main viewport. Clicking on the central viewport triggers a
goto action. When a non-directly connected probe is selected
in the probe bar, the new probe is downloaded, and presented
using a cross-dissolve transition. When going to a directly
connected probe, the panoramic video corresponding to the
selected path is started. The view direction is then interpo-
lated over time, during video playback, between the one at
the time of clicking, which depends on the user, to the arrival
one, chosen among the best precomputed view directions.
This improves the quality of experience, since transitions are
not repeated exactly (unless the starting position is exactly
the same), and motion is consistent with the user-defined cur-
rent orientation. Using precomputed video transitions with
a single view direction would be too constraining, forcing
the system to move the camera to the starting orientation of
the video before transition, and forcing the arrival to a single
fixed camera pose. Since we need a free viewpoint panoramic
video, we render it by remapping frame areas on the 6 faces
of the cube around the current point of view.

1eq aqoid

Figure 12: The central WebGL viewer area shows the currently
selected probe, while the right thumbnail bar visually indexes the
scene, and the bottom thumbnail bar shows a context-sensitive subset
of reachable target position.

6. Results

The proposed method has been used to develop a complete
prototype system, using C++/OpenGL for preprocessing,
Blender 2.68a as external rendering engine, and Apache2
for web serving. The client application has been written
in JavaScript using WebGL and HTMLS. It is able to de-

liver results in a HTMLS canvas running in WebGL-enabled
browsers (Chrome 30 in this paper).

Test models. In order to evaluate our pipeline, we down-
loaded several models from public repositories (Trimble 3D
Warehouse, Archive3D). These websites show a few views
of each model so that users can judge if they are interested in
downloading it. Therefore, these sites are a perfect example
of how the ExploreMaps could be used for a higher quality
browsing of 3D models. Results discussed in this paper are
for the models presented in Table 1, which have been se-
lected to be representative of various model kinds, featuring
complex illumination and/or geometry.

Preprocessing. Table 1 shows the performance of the prepro-
cessing phase for the test models on a PC with Windows 7
64-bit OS, Intel i7 @3GHz CPU, 12GB RAM, equipped with
anVidia GTX 670. First of all, we ran an experiment to prove
that the number of probes, clusters, and transitions highly
depend on the shape of the scene and are only marginally
influenced by the randomized initialization. We processed
the same model 10 times and then computed the Hausdorff
distance between the probes of all the pair of graphs, ob-
taining that the average distance between two graphs for the
same model is 0.9% of the diagonal of the bounding box, the
maximum distance is 10% and the number of probes varies
in an interval of 10% around the expected value. As expected,
for instance, a scene like Sponza needs less probes than the
Medieval Town, because there are less separated spaces. The
important thing, however, is that the processing time for each
phase is linear with respect to the size of the elements in-
volved. Thus, the time for Virtual Exploration is linear in the
number of probes, the time for the synthesis is linear in the
number of clusters, and the times for path determination and
smoothing are linear in the number of paths. The number of
paths is generally much higher for urban models, because it is
more likely that two probes are visible from a common point,
while it is smaller for closed environments like the German
house. The synthesis task requires the acquisition and evalua-
tion of nearby locations to estimate viewpoint stability, thus
requiring more renderings. Also, finding and smoothing the
paths are time consuming tasks, especially smoothing, which
runs a local search optimization and requires 6 renderings for
each evaluation of the objective function. However, note that
our pipeline processed each of these models in times ranging
from about 3 to a little less than an hour. It is interesting to
observe that the biggest model in terms of polygon count
was also one of the fastest to process. This happens because
time depends on how complex the scene is, i.e., how many
probes and paths do we need to see it all. Moreover, note
that these phases may be easily distributed. More specifically,
the synthesis only concerns a single cluster and path related
operation involve pairs of probes. The dominant time of pro-
cessing thus ends up being the rendering of panoramas and
panoramic videos, which, as for movies, can be parallelized
on a render cluster. In this paper, we used 32 8-core PCs, for
rendering times ranging from 40 minutes to 7 hours/model.
Browsing. Our prototype client has been tested on a variety

(© 2014 The Author(s)

Computer Graphics Forum (© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Di Benedetto et al. / ExploreMaps

Sibenik

Sponza

Lighthouse

Lost Empire | Medieval Town | German Cottage

Neptune

Input

#tri 1,468,140 262,267 69,853 48,940 157,136 14,865 79,400 2,227,359
Output

#probes 70 36 92 57 74 78 140 79
#clusters 17 10 21 17 25 30 23 19
#paths 127 29 58 81 206 222 102 93
Time (s)

Exploration 154 23 63 15 41 34 163 38
Clustering 17 3 27 8 13 14 118 14
Synthesis 144 35 449 453 284 395 427 279
Path 7 1 31 12 22 80 23 13
Path smoothing 3,012 122 81 89 482 199 185 150
Thumbn. 11 3 7 5 8 10 7 6
Thumbn. pos 2 2 1 1 4 4 2 1
Total 3,347 189 659 583 854 736 925 501
Storage (MB)

Probes 59 28 72 59 86 103 79 43
Paths 248 146 113 159 371 376 390 120

Table 1: Selected input datasets and associated processing statistics. Probes are stored as 6x1024x1024 JPEG images, while paths are stored as
6x256x256 @25fps webm videos. The numbers are for the graph instance used for the accompanying video. We verified that the number of probes,
clusters, and transitions are only marginally influenced by the randomized initialization by processing the same models 10 times with different
initialization. The Hausdorff distance between the probes of all the pair of graphs is 0.9% of the diagonal of the bounding box, the maximum
distance is 10% and the number of probes varies in an interval of 10% around the expected value.

of devices. The accompanying video shows its performance
in a mobile setting, using a Nexus 4 phone (Qualcomm Snap-
dragon S4 Pro 4-core; 1280x768 screen) and a Acer Ico-
nia 500 tablet (AMD Fusion C-60 and Radeon HD6290;
1280x768 screen) connected to a wireless network. Our tests
demonstrate our ability to sustain interactive performance
on photorealistic environments. During navigation, the user
can look around within a single probe, and move to distant
ones without loosing the sense of location. The frame rate
during probe exploration typically exceeds 50 fps, while the
frame rate during video transitions drops down to about 20
fps due to video decompression and texture updates. Even
though our WebGL application is not a full-fledged viewer,
it shows the potential of this automated browsing approach.
While some of the models could be explorable on such a
mobile device in full 3D, this could definitely not be done
while presenting the same quality images (see, for instance,
volumetric illumination effects in the Museum example of
Fig. 1). The accompanying video also illustrates the definite
advantage of using thumbnails for quick scene browsing and
panoramic videos for transitions with free selection of both
the starting orientation and the arrival one.

7. Conclusions

Our main contribution is an automated GPU-accelerated
technique for transforming general renderable scenes into
a panoramic view graph representation, exploited for cre-
ating automatic scene indexes and movie previews of com-

(© 2014 The Author(s)

Computer Graphics Forum (© 2014 The Eurographics Association and John Wiley & Sons Ltd.

plex scenes, as well as for supporting interactive exploration
through a low-DOF assisted navigation interface. Real-time
performance is achieved on WebGL-based environments even
on low-powered mobile devices.

Admittedly, there are still a few limitations that need to be
addressed. On the construction side, the sampling rate (that
is, the viewport size of the cameras during the exploration
phase), is fixed and inferred from the scene bounding box. For
models where there are interesting details at very different
scales (teapot in a stadium problem), the sampling rate should
be made adaptive. Furthermore, shading information is not
taken into account in the placement of probes, while it could
be important for certain models, especially for the selection of
best views. Currently, the proposed system considers a binary
visibility model: if a surface exists, and is not fully transpar-
ent, it acts as a blocker. Semi-transparency handling could
be included by considering the degree of opacity of a path
during the path construction phase, penalizing paths that go
through semitransparent surfaces with respect to paths going
through free space. Domain-specific knowledge could also
be incorporated in the system, e.g., to achieve human-scale
exploration in architectural models. The incremental nature
of our probe placement technique should also be exploited to
let users optionally provide user-defined set of probes, e.g.,
to force inclusion of semantically relevant/nice shots in the
graph. On the browsing side, our implementation aims at be-
ing a proof of concept, and many improvements are possible.
In particular, there is no way to aim at a point of interest and

Di Benedetto et al. / ExploreMaps

move to the probe that has a best view of it, which may be
frustrating for the user. Moreover, the view graphs should
also be exploited to provide location awareness through the
automatic generation of overhead views.

There are many potential applications for the ExploreMaps.
In particular, we aim to open the way to a richer experience
in presenting 3D models on dedicated web sites, no more
limited to few still images or very constrained orbiting in-
terfaces. Furthermore we can turn construction CAD into
navigable previews for presentation to stakeholders/potential
owners. Thanks to our unattended processing pipeline, we
envisage the implementation of a public web service allow-
ing users to upload 3D models and make them browsable
in WebGL-enabled browsers, making for 3D models what
Flickr/YouTube made for images and videos.

Acknowledgments. This work is partially supported by the EU FP7 Program under the
DIVA (290277) and VASCO (607737) projects. We also acknowledge the contribution

of Sardinian Regional Authorities. We thank Roberto Combet for blender wizardry. See
accompanying video for model credits.

References

[ABB*07] ANDUJAR C., BOO J., BRUNET P., FAIREN M.,
NAVAZO 1., VAZQUEZ P., VINACUA A.: Omni-directional re-
lief impostors. Computer Graphics Forum 26, 3 (Sept. 2007),
553-560. 3

[Abi95] ABIDI B.: Automatic sensor placement. In Proc. Intelli-
gent Robots and Computer Vision (1995), pp. 387-398. 3

[BGM*12] BALSA RODRIGUEZ M., GOBBETTI E., MARTON F.,
PINTUS R., PINTORE G., TINTI A.: Interactive exploration of
gigantic point clouds on mobile devices. In Proc. VAST (2012),
pp. 57-64. 2

[BGMT13] BALSA RODRIGUEZ M., GOBBETTI E., MARTON
F., TINTI A.: Compression-domain seamless multiresolution
visualization of gigantic meshes on mobile devices. In Proc. ACM
Web3D (2013), pp. 99-107. 2

[Che95] CHEN S.: Quicktime VR: An image-based approach to
virtual environment navigation. In Proc. SIGGRAPH (1995),
pp. 29-38. 2

[CM02] COMANICIU D., MEER P.: Mean shift: A robust approach
toward feature space analysis. IEEE Trans. Pattern Anal. Mach.
Intell. 24,5 (2002), 603-619. 5

[CONO8] CHRISTIE M., OLIVIER P., NORMAND J.-M.: Camera
control in computer graphics. Computer Graphics Forum 27, 8
(2008). 1,2

[CPAMOS] CAPIN T., PULLI K., AKENINE-MOLLER T.: The
state of the art in mobile graphics research. [EEE Computer
Graphics and Applications 28, 4 (2008), 74-84. 2

[DGYO07] DIETRICH A., GOBBETTI E., YOON S.: Massive-
model rendering techniques: A tutorial. [EEE Computer Graphics
and Applications 27, 6 (nov/dec 2007), 20-34. 2

[FCODSO08] Fu H., COHEN-OR D., DROR G., SHEFFER A.: Up-
right orientation of man-made objects. In ACM Trans. Graph.
(2008), vol. 27, p.42. 3

[FCOLOO] FLEISHMAN S., COHEN-OR D., LISCHINSKI D.: Au-
tomatic camera placement for image-based modeling. Computer
Graphics Forum 19, 2 (2000), 101-110. 3

[GKYO08] GOBBETTI E., KASIK D., YOON S.: Technical strate-
gies for massive model visualization. In Proc. Solid and Physical
Modeling Symposium (2008), pp. 405-415. 2

[GMB*12] GOBBETTI E., MARTON F., BALSA RODRIGUEZ M.,
GANOVELLI F., DI BENEDETTO M.: Adaptive Quad Patches:
an adaptive regular structure for web distribution and adaptive

rendering of 3D models. In Proc. ACM Web3D (2012), pp. 9-16.
2

[JWLI12] JINY., WU Q., L1U L.: Unsupervised upright orienta-
tion of man-made models. Graphical Models (2012). 3

[KCSC10] KoprFJ., CHEN B., SZELISKI R., COHEN M.: Street
slide: browsing street level imagery. In Proc. SSIGGRAPH (2010),
pp. 96:1-96:8. 2

[KFLO1] KIMBER D., FOOTE J., LERTSITHICHAI S.: Flyabout:
spatially indexed panoramic video. In Proc. ACM Multimedia
(2001), pp. 339-347. 2

[Lip80] LIPPMAN A.: Movie-maps: An application of the optical
videodisc to computer graphics. Proc. SIGGRAPH 14 (July 1980),
32-42.2

[L1o82] LLOYD S.: Least squares quantization in pcm. IEEE
Trans. Inf. Theory 28, 2 (mar 1982), 129 — 137. 4

[MLL*10] MAGLO A., LEE H., LAVOUE G., MOUTON C.,
HuUDELOT C., DUPONT F.: Remote scientific visualization of
progressive 3D meshes with X3D. In Proc. ACM Web3D (2010),
pp. 109-116. 2

[NKB10] NIEBLING F., KOPECKI A., BECKER M.: Collaborative
steering and post-processing of simulations on HPC resources:
Everyone, anytime, anywhere. In Proc. ACM Web3D (2010),
pp. 101-108. 2

[Rap98] RAPPOPORT D.: Image-based rendering for non-diffuse
synthetic scenes. In Proc. Rendering techniques (1998), p. 301. 3

[SCKO7] SHUM H., CHAN S., KANG S.: Image-based rendering.
2007. 2

[SKG*12] SINHA S., KOPF J., GOESELE M., SCHARSTEIN D.,
SZELISKI R.: Image-based rendering for scenes with reflections.
ACM Trans. Graph. 31, 4 (2012), 100. 2

[SLF*11] SECORD A., LU J., FINKELSTEIN A., SINGH M.,
NEALEN A.: Perceptual models of viewpoint preference. ACM
Trans. Graph. 30,5 (Oct. 2011). 2,4

[SRB06] SAFROI., RON D., BRANDT A.: Graph minimum linear
arrangement by multilevel weighted edge contractions. Journal
of Algorithms 60, 1 (2006), 24—41. 5

[SRRO3] ScoTT W. R., ROTH G., RIVEST J.-F.: View plan-
ning for automated three-dimensional object reconstruction and
inspection. ACM Comput. Surv. 35, 1 (Mar. 2003), 64-96. 2, 3

[SS12] SANKAR A., SEITZ S.: Capturing indoor scenes with
smartphones. In Proc. UIST (2012), pp. 403-412. 2

[SSS06] SNAVELY N., SEITZ S. M., SZELISKI R.: Photo tourism:
exploring photo collections in 3d. In Proc. SIGGRAPH (2006),
pp. 835-846. 2

[TKKT12] TomPKIN J., KiMm K. I., KAUTZ J., THEOBALT C.:
Videoscapes: exploring sparse, unstructured video collections.
ACM Trans. Graph. 31,4 (2012), 68. 2

[VD0O8] VAN DONGEN S.: Graph clustering via a discrete uncou-
pling process. SIAM Journal on Matrix Analysis and Applications
30,1 (2008), 121-141. 4

[VFESHO2] VAZQUEZ P.-P., FEIXAS M., SBERT M., HEIDRICH
W.: Image-based modeling using viewpoint entropy. In Proc. CGI
(2002). 3

[Vin07] VINCENT L.: Taking online maps down to street level.
Computer 40 (December 2007), 118-120. 2

[WDH*06] WENHARDT S., DEUTSCH B., HORNEGGER J., NIE-
MANN H., DENZLER J.: An information theoretic approach for
next best view planning in 3-d reconstruction. In Proc. ICPR
(2006), pp. 103-106. 3

[WMO03] WILSON A., MANOCHA D.: Simplifying complex envi-
ronments using incremental textured depth meshes. ACM Trans.
Graph. 22, 3 (2003), 678-688. 3

[YGKMO08] YOON S., GOBBETTI E., KASIK D., MANOCHA D.:
Real-time Massive Model Rendering, vol. 2 of Synthesis Lectures
on Computer Graphics and Animation. August 2008. 2

(© 2014 The Author(s)
Computer Graphics Forum (© 2014 The Eurographics Association and John Wiley & Sons Ltd.

