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Figure 1: Sample images from our interactive OpenGL ray tracer using the CHC+RT algorithm. From left to right: A City model with 138M
triangles (7.89GB), the Boeing 777 model with 350M triangles (18.9GB) and 16 copies of the Powerplant model with 205M triangles (11.4GB).
Our algorithm based on hierarchical occlusion culling allows a simple scheduling scheme for managing out-of-core scenes and also significantly

accelerates OpenGL-based ray tracing in complex scenes.

Abstract

We propose a new technique for in-core and out-of-core GPU ray tracing using a generalization of hierarchical
occlusion culling in the style of the CHC++ method. Our method exploits the rasterization pipeline and hardware
occlusion queries in order to create coherent batches of work for localized shader-based ray tracing kernels. By
combining hierarchies in both ray space and object space, the method is able to share intermediate traversal
results among multiple rays. We exploit temporal coherence among similar ray sets between frames and also within
the given frame. A suitable management of the current visibility state makes it possible to benefit from occlusion
culling for less coherent ray types like diffuse reflections. Since large scenes are still a challenge for modern GPU
ray tracers, our method is most useful for scenes with medium to high complexity, especially since our method
inherently supports ray tracing highly complex scenes that do not fit in GPU memory. For in-core scenes our method
is comparable to CUDA ray tracing and performs up to 5.94x better than pure shader-based ray tracing.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image Generation—
Line and curve generation

1. Introduction coherence, because switching primitives and rendering at-
tributes occurs much less frequently, and most operations
work on an object-by-object basis on data residing in local
memory, without the need to access the entire scene. This
explains the success of massively parallel GPU rasterization
hardware based on streaming architectures. In contrast, for
ray tracing, data is usually organized in space-partitioning
data structures, and the traversal of these data structures re-
sults in non-streaming access patterns to the scene geom-
etry. Even though current GPUs support general program-
In principle, rasterization offers more code- and data-cache ming models and allow for programming acceleration data

Depth-buffered rasterization and ray tracing are nowadays
the two dominant techniques in real-time rendering. In its
basic form, rasterization is an object-order approach that
determines visible surfaces by going through scene primitives,
projecting them to screen and maintaining the nearest surface
for each pixel. Ray tracing, on the other hand, is an image-
order approach that determines visible surfaces by computing
ray-primitive intersections for each pixel.
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structures and complex traversal algorithms, efficient mem-
ory management and computation scheduling is significantly
harder than for rasterization, leading to performance problems
and/or complications when trying to integrate rasterization
and ray tracing within the same application, e.g., to compute
complex global illumination.

We address these issues by proposing a ray-tracing tech-
nique that is designed to be integrated into the streaming ras-
terization pipeline. The core idea of the method is to exploit
the rasterization pipeline together with occlusion queries in
order to create coherent batches of work for GPU ray tracing.
By combining hierarchies in both ray space and object space,
and making use of temporal coherence, the ray-traversal over-
head is minimized, and the method can concentrate on com-
puting ray-object intersections for significantly reduced sets
of rays and objects. This batched computation and memory-
management approach makes it possible to use the same
streaming schemes employed in current rasterization systems
also for ray tracing. This opens the door to a flexible integra-
tion of rasterization and ray tracing, both for dynamic and
out-of-core scenes. We show the efficiency of our method for
several ray types like soft-shadow rays and diffuse interreflec-
tions. The main contributions of our paper are:

e Occlusion culling for ray tracing using the rasterization
pipeline, which is up to 6 times faster than standalone
OpenGL-based ray tracing.

e A means for scheduling visible parts of the scene hierar-
chy for ray-triangle intersection on the GPU that allows a
simple and natural extension to out-of core ray tracing.

2. Related Work

Our work generalizes hierarchical occlusion culling, a tech-
nique traditionally used for accelerating rasterization, to in-
corporate ray-tracing effects. In the following, we discuss the
most relevant work in these two well-studied fields, particu-
larly those targeting the acceleration of both ray-tracing and
rasterization techniques.

Ray tracing data structures and acceleration. Extensive
research has been performed with the aim of accelerating
the computation of intersections of rays with the scene. The
commonly used acceleration data structures include uniform
grids, octrees, kd-trees, and bounding-volume hierarchies
(see established surveys for more details [WMG™*09, HH11]).
One of the keys to efficiency is the quality of the acceler-
ation data structure, which, for the case of hierarchies, is
usually constructed according to the Surface Area Heuris-
tics (SAH) [GS87]. Related to our approach are the meth-
ods based on batched processing of rays, such as cone trac-
ing [Ama84], beam tracing [HH84,LSLS09], or more gen-
erally the stream-ray architecture [RGDO09]. Mora [Morl11]
proposed a method which avoids organizing the scene in a
spatial data structure, but instead sorts large groups of rays
together with the scene geometry on the fly. The method of

Bolous et al. [BWBO0S8] uses coarse-grained visibility tests to
reduce the active ray set for CPU packet tracing, which have
a similar purpose as the hardware occlusion queries used by
CHC+RT. While our method shares the idea of packet tracing,
it differs particularly in the fact that it is designed for integra-
tion with GPU-based rasterization and does not use explicit
ray bounding primitives or other per-packet information.

Recent advances in GPU programming make it possible to
do real-time ray tracing on the GPU [AL09, AK10,PBD* 10,
ALK12]. While these methods are very fast, they usually
require that the scene and the associated acceleration data
structure is fully available in GPU memory, which makes it
difficult to handle large scenes. Our technique, in contrast,
naturally leads to more coherent data access patterns and to
batch-based memory management.

Mixing ray tracing and rasterization. Several algorithms
have tried to use the limited features of rasterization-based
rendering for ray tracing. Most notably, Carr et al. [CHHO02]
proposed the Ray Engine, which achieves ray tracing effects
by rendering a screen-sized quad and computing ray inter-
sections for each scene triangle. The brute-force version of
this process is inefficient and uses huge amounts of fill rate.
Roger et al. [RAHO7] improves on this method by building
a hierarchy of cones over the rays and using them to re-
duce the number of computed intersections. In our algorithm,
we conservatively cull those pairs of triangle batches and
screen-space patches where the geometry is not intersected
with respect to the screen-space patch. Novak and Dachs-
bacher [ND12] use rasterization to construct a hierarchy con-
taining resampled scene geometry that can be processed by
standard ray tracing methods. Davidovic et al. [DEG* 12] pro-
posed a 3D rasterization method designed for coherent rays.
The authors show that there exists no fundamental difference
between rasterization and ray tracing of primary rays, but a
continuum of approaches that blend seamlessly between both
paradigms. Our algorithm further explores the space between
both paradigms by using the fixed-function pipeline and the
z-buffer for arbitrary rays. Recently, Zirr et al. [ZRD14] pro-
posed a method for ray tracing in a rasterization pipeline,
using a voxel scene approximation to accelerate the traversal.
A voxel representation is also used by Hu et al. [HHZ" 14],
using the A-buffer to search ray-triangle intersections in a
shader. In contrast to these methods, we support casting arbi-
trary rays and out-of-core rendering.

Out-of-core ray tracing. Most of the work on render-
ing large scenes has focused on combining CPU tech-
niques with out-of-core data-management methods (see a
survey on massive-model rendering [GKYO0S8]). Notable ex-
amples are methods using a scheduling grid for rays to
improve the coherence of scene accesses (e.g., [PKGH97,
MBK*10]) and methods exploiting level-of-detail represen-
tations [CLF*03, LYTMO8, Afr12]. More recent work also
combined CPU/GPU computation using distributed comput-
ing approaches [BBS*09,KSY14]. In this context, Pantaleoni
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et al. [PFHA10] proposed the PantaRay system, targeted at
fast relighting of complex scenes based on occlusion caching.
Garanzha et al. [GBPGI11] used a complex data structure
similar to PantaRay for Centil.eo, a commercial progressive
out-of-core path tracer based on CUDA. Instead, our method
subdivides the scene into adaptively sized batches of visible
geometry by using occlusion culling, allowing simpler and
more flexible data management that yields a natural out-of-
core extension.

Visibility and rasterization methods. View-frustum and oc-
clusion culling methods are commonly used to rasterize only
the visible part of the scene and thus to make rendering output
sensitive. In particular, hardware occlusion queries can be
used to efficiently test the visibility of simple proxy objects,
such as bounding boxes, against the depth buffer before ren-
dering the real geometry [SBMO03, BWPP04, GM05, GBKO06,
MBWO8]. A general technique commonly used to compute
complex effects in the rasterization pipeline is deferred shad-
ing, generalized by Saito and Takahashi [ST90], and used in
several methods discussed above. Our novel algorithm also
exploits this technique and generalizes the described culling
methods by handling arbitrary primary and secondary rays
with occlusion queries.

3. Overview

Figure 2 provides an overview of our method. We first render
the scene either by rasterization or tracing primary rays. Then
the method applies a number of additional ray tracing-based
shading passes, which add the required illumination effects
to the rendered image. In each pass, we first generate the rays
to be cast and store them in a (full-screen) ray texture with
one ray per pixel. Thus, the rays are directly associated with
the pixels they should contribute to. We generate 3 ray types
in this phase: soft-shadow rays, ambient-occlusion rays, and
diffuse rays. Note that while a ray is stored in the pixel it
will finally contribute to, it could start anywhere in the scene.
Each pass uses one ray texture, and thus evaluates one ray
contributing to the pixel.

The core part of our method is computing ray-triangle in-
tersections in the rasterization pipeline using the given ray
texture and a CPU-side scene hierarchy. The hierarchy can
be a Bounding Volume Hierarchy (BVH) used by the CPU to
perform view-frustum and occlusion culling. The basic opera-
tion that we use is determining whether rays corresponding to
a certain screen-space tile intersect the bounding box of the
given node of the BVH. We call this pair (the screen-space
tile and the BVH node) a qguery pair. The algorithm starts
with the query pair given by the tile representing the whole
screen (all rays) and the bounding box corresponding to the
root of the BVH (all triangles). The potential intersection
of rays and the bounding box is evaluated in a shader that
computes the nearest intersection of each ray with the given
box. This distance is passed as a z-value to be compared with
the already evaluated nearest distance using the hardware
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Figure 2: Overview of the proposed algorithm, CHC+RT.

z-buffer. We detect the rays intersecting the box by issuing an
occlusion query that encapsulates the query pair processing.
If the result of the occlusion query indicates a non-zero num-
ber of intersections, we either proceed by subdividing the
screen-space tile or the BVH node and repeating the process
for the newly created query pairs. This hierarchical traversal
is indicated by the yellow box in Figure 2. The subdivision
is terminated when reaching tiles of a certain minimum size
and when meeting a termination criterion of the BVH. Then
the actual ray-triangle intersections are computed.

We exploit temporal coherence by maintaining generalized
visible and invisible fronts for the current ray set (stored
as previously visible pairs and previously invisible pairs, as
shown in Figure 2). Using this method we can reduce the
number of intersection tests and also eliminate stalls caused
by the latency occlusion queries. One key to the efficiency
of our method is that the occlusion-culling phase computes a
relatively coarse-grained cut in the query-pair hierarchy. We
chose to use GLSL shader-based traversal to compute the fine-
grained ray-triangle intersections of each visible subtree of
the BVH. GLSL is very efficient in rendering small subtrees
due to the high cache coherence of the traversal stack. The
parts where query pairs are scheduled for intersection are
shown in red in Figure 2. While our method is conceptually
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similar to hierarchical occlusion culling for rasterization, the
main difference is that the occlusion queries are generalized
to arbitrary rays, and that we also maintain a hierarchy over
screen space to localize the ray contributions.

4. Hierarchical Occlusion Culling for Ray Tracing

This section describes algorithmic and implementation de-
tails of the proposed method. We first describe the main
components of the algorithm. Then we describe an optimized
version of the method using temporal coherence.

4.1. Generalized Occlusion Queries

In our method, we use occlusion queries to cull those sets of
rays and triangles that cannot intersect. The occlusion queries
used in our method can be seen as a generalization of clas-
sical hardware occlusion queries [BWPPO4]. Traditionally,
occlusion queries handle visibility from the camera, and thus
they deal with a well-defined set of primary rays enclosed in
the viewing frustum. In ray tracing, we deal with arbitrarily
distributed rays, and thus we have to be able to determine
which rays intersect the given geometry using some other
means than simple projection of the geometry and its rasteri-
zation. Similar to classical rasterization, we use a depth buffer
to store the nearest intersection of each ray with the part of
the scene processed so far (recall that rays are associated with
pixels). We subdivide the screen into tiles corresponding to
packets of rays. For each tile, we use an occlusion query to
check if the bounding volume of an object intersects the rays
enclosed by the tile. If there is at least one intersection, the
query returns a non-zero value and we proceed by calculating
the actual ray-triangle intersections. This step can be eas-
ily evaluated using a fragment shader in which we pass the
bounding volume (axis-aligned box) as a shader parameter.
The shader evaluates the ray/box intersection and returns the
distance of the intersection as the depth value of the fragment.
The query can thus count the number of fragments having
nearer intersections than those stored in the z-buffer so far.
So the main difference to classical occlusion queries is that
the z-buffer values do not represent camera depth values, but
distances along rays.

4.2. Shader-based Ray-Triangle Intersection

The visibility in the occlusion-query stage corresponds to a
coarse cut in the BVH, making the method less sensitive to
spatially incoherent ray packets. Once we reach a termination
node in the BVH, the subtree is subsequently scheduled for
intersection. The actual ray-triangle intersections are com-
puted in a fragment shader executed for a given screen-space
tile. The geometry (triangles) is stored in a texture buffer ob-
ject and passed as a shader parameter. The actual shading is
deferred to the moment when all scene geometry is processed
and the final nearest intersections have been determined.

4.3. Hierarchical Occlusion Culling

The two above-described principles (generalized occlusion
queries and shader-based ray triangle intersection) can be
used together in an algorithm which processes both the rays
and the triangles hierarchically. The hierarchy of rays is de-
fined implicitly by a quadtree-based screen-space subdivision,
the hierarchy of triangles is defined by a bounding-volume
hierarchy (BVH). We propose a generalization of hierarchi-
cal occlusion culling, with the main difference that the query
objects are not BVH nodes, but query-pairs consisting of a
BVH-node and a screen-space tile.

o~
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(triangles)

screen
(rays)
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{_} screen splits
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Figure 3: [llustration of the query-pair hierarchy. The interior nodes
of the hierarchy correspond to either screen-space splits or object-
space splits. The leaf nodes belong to either the visible front (rays and
triangles that can intersect) or the invisible front (rays and triangles
that cannot intersect).

4.4. Traversing the Query-Pair Hierarchy

When the result of the query indicates an intersection, we
have to subdivide the query pair and construct new query
pairs to refine the intersection results. Here, we have to de-
cide between two choices — subdividing in screen space, and
creating 4 new query pairs, or subdividing in object space,
and creating two new query pairs (see Figure 3). This de-
cision influences in how many steps a particular subtree of
the query-pair hierarchy can be culled as being invisible, and
hence it is important for the performance of the traversal
algorithm. A split in object space can potentially reduce the
intersection cost, while a split in screen space can potentially
reduce the area and hence the guery cost. Note that a split
in object space can potentially double the overdraw and thus
the query cost since both child nodes have to be queried for
the same tile. We found that the best performance can be
achieved by comparing the areas of the screen-space tile and
the object-space node of a pair, which are connected to the
query cost and intersection probability, respectively [GS87].
The areas are normalized by the area of the bounding box of
the BVH root (A,p0r) and the full screen extent (Ascreen). They
are also weighted by a hardware-dependent factor ¢4, which
we set to 0.5 in all our comparisons (favoring object-space
splits in the beginning). We always split in the domain where
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the corresponding ratio is larger, i.e.:

true:  split in object space
Apyn Avile
Sty ———
Arl)()t ASCI‘EEFI

false: split in screen space

This heuristic aims to keep a rough balance between the ex-
tents of the screen-space and object-space domain within a
query pair. Note that it would be more consistent to compare
both areas in world space, but until we compute the intersec-
tions we do not know the world-space extent of the bounding
volume of rays covered by a screen-space tile.

4.5. Exploiting Temporal Coherence

The hierarchical algorithm described above can be improved
by exploiting temporal coherence among rendered frames. In
particular, similar to occlusion-culling algorithms, we can ini-
tialize the content of the depth buffer by first evaluating inter-
sections using all visible query pairs from the previous frame.
Note that this assumption does not invalidate the correctness
of the results since the actual ray-triangle intersections al-
ways use data for the current frame, i.e., rays generated for
the current frame and triangles at correct positions for the
current frame. After processing previously visible pairs, we
issue queries on previously invisible pairs to verify if they
stay invisible. If any previously invisible pair becomes visible,
we process it hierarchically and collect all newly visible pairs
for which ray-triangle intersections should be computed. At
the end of the frame, these new intersections are evaluated,
and finally the visibility front consisting of both visible and
invisible pairs is updated.

5. CHC+RT

In this section we address the details regarding the actual
OpenGL implementation of the method and its optimizations.

5.1. Hierarchical Traversal

The pseudocode of our traversal algorithm is shown in Algo-
rithm 1. In analogy to occlusion culling [BWPP04, MBWO08],
we talk about visible/invisible nodes. For a node in the query-
pair hierarchy, this means that the occlusion-query result is
either positive (there are potential intersections, hence visi-
ble) or zero (there are no intersections, hence invisible). Most
optimizations proposed in the CHC++ algorithm [MBWO08]
can also be used for CHC+RT for reducing the overhead
of generalized occlusion queries. Our algorithm starts from
the previous cut of visible leaf nodes and invisible (leaf or
interior) nodes. It consists of three phases.

Phase 1. All previously visible leaf nodes are scheduled for
ray-triangle intersection. This initializes the z-buffer with the
intersections from those query pairs which have been visible
in the previous frame and allows us to exploit ray occlusions.

Phase 2. The visibility status is queried for the previously

(© 2015 The Author(s)
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visible and invisible pairs. First, all the previously invisible
nodes are queried (line 4) and enqueued in the so-called
query queue. Since the visibility status of the previously
visible nodes could have changed from the previous frame,
we lazily query them and update their visibility status at the
end of the frame. Analogous to CHC++, we use a stratisfied
sampling scheme by randomizing the first frame where the
node is queried (between 1..n frames). Thereafter, the node
is queried every n frames. In our tests, we set n to 3.

Phase 3. The actual hierarchical traversal is where newly
visible pairs are detected and the invisible front is updated for
the next frame. It starts by fetching the query results one at a
time: If the visibility did not change from the previous frame,
we are finished. If a node turned visible, we further subdivide
the node and enqueue the child nodes, until either a node
is found to be invisible or a termination criterion is met (in
which case we set it to visible). During the traversal, whenever
we have compiled more than m visible nodes (where m = 16
in our tests), we compute the ray-triangle intersections of the
nodes found newly visible (line 22).

Each frame, invisibility information is pulled up in the
hierarchy. This means, if all child nodes are invisible, the
parent node is set to invisible and the child nodes can be
deleted. This can be continued recursively until we encounter
a visible child node, but we restricted it to at most one level
per frame to avoid fluctuations. Note that for this purpose
we maintain a query-pair hierarchy in order to recall the
history of the subdivision and quickly determine which pairs
to merge during the pull-up phase.

Figure 4: Left: Visualization of the occlusion-query overdraw for
primary rays, where reddish regions have high overdraw. Middle and
right: Illustration of the reduced spatial coherence using diffuse rays
with length 10 and 1000, respectively. An opaque green screen-space
tile means that its rays potentially intersect > 2M triangles.

A useful optimization for previously visible node queries
(line 6) are the so called multi-queries [MBWO8]. Their pur-
pose is to reduce the overdraw caused by queries overlapping
in screen space, which we identified as the main source of
performance overhead (see Figure 4-left). Multi-queries com-
pile many previously invisible pairs projecting to the same
screen-space tile into a single occlusion query over multiple
bounding boxes. If this query is successful and all nodes stay
invisible, many nodes have been handled in a single shader
pass, which is more efficient than using a separate pass for
each individual node. Note that in case the query fails (line
14), multi-queries have to be handled differently. In particu-
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lar, all nodes have to be queried individually, since we don’t
know which of the nodes has become visible. We also exploit
the tighter-bounds optimization of CHC++ by always query-
ing the bounding boxes of the two children of a BVH node
instead of the node itself.

// Phase 1: intersect visible pairs
sort previously visible pairs by tile
for all previously visible pairs do
compute ray-triangle intersections;
end
// Phase 2: query pairs
sort previously invisible pairs by tile
for all previously invisible pairs do
‘ compile (multi-)query and enqueue;
end
for previously visible leaves do
10 ‘ update visibility status every n frames;
11 end
// Phase 3: recursive traversal
12 while not query queue empty do

AW N =

N-T--IEEN I V) |

13 fetch next query result;

14 if query result == visible then

15 if terminationReached(query pair) then

16 add node to newly visible leaves;

17 if newly visible leaves > m then

18 for newly visible leaves do

19 compute ray-triangle intersections;
20 clear newly visible leaves;

21 end

22 end

23 end

24 else

25 subdivide(query pair);

26 for all children do

27 ‘ issue occlusion query and enqueue;
28 end

29 end

30 end

31 end

// intersect remaining visible leaves
32 for newly visible leaves do
33 compute ray-triangle intersections;
34 end
Algorithm 1: Traversal

5.2. Ray-Triangle Intersections

The ray-triangle intersection is the last stage of our algo-
rithm. As we compute ray-triangle intersections for localized
subsets of our scene geometry, we can achieve good data-
access coherence and can employ streamlined acceleration
data structures. The efficiency of the implementation of the
proposed method greatly depends on the CPU/GPU data man-
agement, i.e., the way in which we pass the shader data, the

actually used intersection algorithm, and how we organize
the rendering calls of the shader kernels.

GLSL shader. We chose to use a GLSL shader-based traver-
sal algorithm for the final intersections of the termination
nodes in the BVH. The shader uses the speculative while-
while ray traversal proposed by Aila and Laine [AL09] for
CUDA-based ray tracing. The traversal always fetches both
child nodes and traverses the nearer child first in order to ex-
ploit occlusion. We cache the intersected leaves for delayed
coherent ray-triangle intersection. We observed that the op-
timal value for this leaf cache was 2 on our hardware. The
cache size is small but nevertheless crucial, as omitting the
cache causes a slowdown by approximately 30%.

CPU-GPU transfer. We pass the geometry to the shader
using texture buffer objects in GLSL. For the in-core version,
we simply allocate two texture buffers: one for the BVH and
one for the geometry. Since we currently only allow diffuse
materials, we store a diffuse color per triangle in the alpha
channel of the RGBA texture used for storing the geometry.

A
TS - A ) ma A=
4i1em -
-

-

Figure 5: Left: Visualization of the BVH subtrees that will be sched-
uled for intersection in the fragment shader. Right: Visualization of
the number of subtrees compiled in each batch (1 (red) — 24 (white))
for per-tile based batching.

Termination criteria. We use 3 different termination criteria
for the traversal of the query-pair hierarchy. One is connected
to the termination in the screen-space hierarchy, the other two
to the termination in the BVH hierarchy. In our experiments,
the optimal size of a screen-space tile seemed independent
of the chosen resolution of the actual render target. In our
case, we set the minimum tile size to 200° pixels in all ex-
periments, meaning that each tile covers less than 2% of the
screen at Full-HD resolution. The key termination criterion
in the BVH hierarchy turned out to be the maximum subtree
height (i.e., the number of traversal steps until the farthest of
the leaf nodes can be reached). The reason is that the GLSL
shader-based traversal is very sensitive to the maximum stack
size, which has to be at least as large as the maximum subtree
height. The optimal granularity of the subtrees depends on
various factors like the presence of occlusion. In our exper-
iments, we found that setting the maximum subtree height
to 24 levels works well in many cases. Figure 5 shows the
subtrees induced by our termination parameters. Another ter-
mination criterion is the maximum number of triangles per
subtree, which becomes important in the out-of-core scenar-
i0s. We set it to 1M triangles in all our tests.
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By-Tile sorting. In our experiments it turned out to be in-
efficient to schedule the visible subtree nodes of the BVH
separately for ray-triangle intersection. Instead, the GPU is
better utilized if the contribution of several subtrees to the
same screen-space tile is computed in a single shader call.
For this purpose we sort the nodes scheduled for intersection
by screen-space tile (line 2 in Algorithm 1) and then pass an
array with the maximum number of 24 node ids to the shader,
together with their bounding boxes. The shader then tests
the bounding boxes for intersection and starts the traversal
for all nodes that pass the intersection test. A visualization
of this method is shown in Figure 5. The right image visual-
izes the number of subtrees that can be handled in a single
shader pass, and how this number increases with distance.
Apart from the better shader utilization, another benefit of
this approach is that we can better exploit occlusion within
the shader. For certain ray types like shadow or primary rays,
this approach can be optimized further by passing the nodes
in an approximate front-to-back order.

5.3. Ray Generation and Scheduling

In each render pass we generate a single ray direction for pri-
mary rays as well as shadow, ambient occlusion, and diffuse
rays. The performance of our method benefits from tempo-
ral coherence and to a lesser degree spatial coherence. Less
spatial coherence leads to less efficient pruning of invisi-
ble subtrees, as shown in Figure 4-right. We take this into
account already during ray generation. An alternative possi-
bility would have been to use ray sorting on the generated
rays.

Spatial coherence. For both ambient occlusion (or diffuse
rays, respectively) and shadow rays, we generate the samples
in a stratified fashion. Using a Halton sequence, the same ray
direction is generated for each pixel and perturbed with a ran-
dom per-pixel offset. The degree of randomization depends
on the number of rays shot. To achieve this for ambient occlu-
sion and diffuse rays, we apply a random per-pixel rotation
to the ray in tangent space, as proposed by Mittrig et al. for
SSAO [Mit07]. The maximum angle is chosen so that the
samples can cover the whole hemisphere.

Temporal coherence. For primary and shadow rays, ray di-
rections are usually sufficiently coherent so that we maintain
a single visibility status for all shadow rays. For ambient oc-
clusion rays and diffuse rays, the ray directions exhibit more
variation. We can nevertheless enforce temporal coherence
by using a separate visibility status per ray direction, which
contains all query pairs in the visibility front. Since we use a
coarse hierarchy in screen space and object space, it is easy
to keep track of many such cuts.

5.4. Out-of-Core Ray Tracing

Our method naturally allows for out-of-core ray tracing, with
the possibility of rendering potentially unbounded scenes.

(© 2015 The Author(s)
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This is difficult to achieve with current GPU ray-tracing ar-
chitectures. In the best case, we assume that (most of) the
working set required for computing a given frame fits in
GPU memory, while the entire scene does not. By using a
cache of recently used termination nodes on the GPU, we can
avoid transferring to the GPU the geometry that is already
in the cache. Note that this sort of memory management
requires only minor modifications to the method shown in
Algorithm 1, and can be managed inside the compute ray-
triangle intersections function. In our current implementa-
tion, we use a simple round-robin style cache management
for the BVH and geometry data of the visible subtrees. When
caching an out-of-core node, the data is simply written in the
next free slot in the texture buffer. When the end of the buffer
is reached, we start overwriting the data from the beginning
and mark the overwritten nodes as out-of-core. As the only
extension to the core algorithm shown in Algorithm 5.2, we
sort geometry that is scheduled for intersection by their out-
of-core status, i.e., visible nodes that have their data currently
cached on the GPU are scheduled for intersection first. Note
that we still use per-tile sorting among cached nodes.

6. Discussion

At the core of our technique is a novel scheduler and mem-
ory manager for fine-grained ray-tracing computations that
exploits coarse-grained hierarchies in both object space and
screen space. The screen-space hierarchy significantly im-
proves scheduling and speeds up rendering. E.g., for the
Powerplant scene it results in a speedup by a factor of 3
for Full-HD. Moreover, a screen-space hierarchy makes the
method well suited to the current trend towards larger resolu-
tion displays (4K and above). By working at a coarse grain,
we can amortize the cost of taking decisions over a large
number of ray-primitive intersection queries, and use an effi-
cient and flexible adaptive-loading architecture working on
optimized geometry batches.

Analysis of problem-domain pruning. A good insight into
the principle of the method and its potential strengths and
weaknesses can be obtained by analyzing the coverage of the
whole ray-triangle intersection domain by the query pairs.
For this analysis, we express this domain using a matrix in
which each ray corresponds to a row in the matrix, while each
triangle corresponds to a matrix column. When computing
the nearest intersections of rays and triangles, there will be
a single unique intersection in each row of the matrix, while
there can be many intersections for each column (a triangle
can define a nearest intersection for many rays). Our query
pairs need to be constructed in a way that every potential
intersection is correctly determined. In other words, the query
pairs have to fully cover the whole matrix. We can observe an
example of such a matrix and its coverage by query pairs in
Figure 6. This matrix is generally very sparse. The coverage
of the matrix by query pairs depends on two main factors:
(1) the coherence of intersections and (2) on how densely the
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Figure 6: [llustration of the coverage of the whole domain of ray-
triangle intersection by constructed pairs. Pairs indicating potential
ray-triangle intersections are shown in red, while the pairs for which
the geometry bounding boxes do not intersect the rays are shown in
green. The actual ray-triangle intersections are shown in blue. The
figure shows batches of visible pairs (G-Gs) used for computing
ray-triangle intersections. Note that the geometry Gg is not used in
any batch, meaning that it is not intersected by any ray and will
not be scheduled for intersection. Note the two example cuts in the
hierarchies: the cut in the screen-space subdivision shows query
pairs corresponding to a BVH termination node, and the cut in the
BVH shows query pairs corresponding to a given screen-space tile.

rays sample the scene. The triangles are sorted in the BVH
and therefore, for similar rays the intersections should cluster
around similar triangles, creating a compact intersection clus-
ter which can be covered by a few query pairs. However, if
the rays are highly incoherent, the coverage by query pairs
will become more complex. Note that even then, the matrix
will be sparse, and at some point we will be able to prune
most of the intersection domain if enough query pairs are
used.

Another interesting observation follows from the analysis
of rows and columns of the matrix. In particular, the number
of query pairs covering a row of the matrix directly corre-
sponds to the overdraw of the corresponding screen pixel.
The visible query pairs (shown in red) will cause ray/triangle
intersections to be executed for this pixel and passed to the
z-buffer, while the invisible query pairs (green) will execute
the ray/box intersection verifying the invisibility of the asso-
ciated geometry by the given ray. Looking at the columns of
the matrix, we can observe the number of query pairs (screen-
space tiles) needed to handle the given geometry (triangle
batch). The visible query pairs (red) are those for which the
actual ray-triangle intersections are computed, while the in-
visible query pairs show the occlusion queries issued for rays

which do not intersect the triangle batch. Note that the size
of the rectangles shown in the matrix depends on the depth
of the corresponding query pair in the two hierarchies. Thus
the coverage of the matrix by query pairs also visualizes the
double-hierarchical cut on which our algorithm operates.

GLSL rendering. Our method is not necessarily bound to
a specific implementation, and a CUDA version of the algo-
rithm is definitely possible. Nonetheless, focusing on GLSL
in this paper provides specific advantages. First of all, by
explicitly using a rasterization platform, we better convey
the underlying idea that there is a continuum between rasteri-
zation and ray-tracing approaches. We aim to foster further
research in the area of hybrid rendering by showing how
techniques from the rasterization world, such as coherently
scheduled visibility algorithms, batched computation and
out-of-core rendering, can successfully improve ray tracing.
Second, GLSL simplifies the implementation through fea-
tures of the fixed-function pipeline. For instance, we can use
automated shader scheduling instead of implementing ex-
plicit schemes, and, while Z-buffering and visibility queries
can be realized in CUDA, using GLSL avoids the need to
craft efficient synchronization methods using atomic oper-
ations. Finally, a GLSL implementation has the additional
benefit to be less hardware dependent with respect to CUDA
and to simplify integration into classic OpenGL rendering
pipelines.

Limitations. Our framework currently only supports static
scenes, but an extension to fully dynamic scenes would be
possible without changes to the core of the algorithm. While
different ray types are supported by our method and we
present techniques for enforcing more coherence, it is still
true that the method becomes less efficient for fully incoher-
ent ray patterns. We focus on the overall method and its ca-
pability of handling large scenes using single-bounce illumi-
nation. For simple multi-bounce illumination, e.g., Whitted-
style ray tracing, there is enough coherence even for sec-
ondary bounces, and our method can use a separate hierarchy
cut for each such bounce. For a full path-tracing solution,
our plan is to have a sorting step after each rendering pass
that would reorder rays in a more coherent order using a
space-filling curve based on scene hit points, along the lines
of Moon et al. [MBK*10]. Other authors have already done
this sorting on the GPU [GL10], so we are confident that
real-time performance is possible. This pass would generate
a linear order, and our screen-space hierarchy will become a
ray-space hierarchy built on reordered rays.

7. Results

For our experiments we use an Intel i7-3770 CPU with
3.5GHz (using one core), 8 GB RAM, a resolution of
1920 x 1080 and an NVIDIA Titan GPU with 6 GB of video
memory. However, as there seems to be a limitation at 4 GB
for use with a single thread, we are only able to allocate a

© 2015 The Author(s)
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Powerplant 777-Section

A ot

City-200

Powerplant x 16

R\

139M

Triangles 21.5M 205M 350M
Total size 1.19GB 7.89GB 11.4GB 18.9GB
9%In-core 100% 47 % 32% 20%
Bvh/Geo 140/537MB 126/584MB 244/984MB 1.54/6.35GB 2.02/9.34GB 2.80/16.1GB
Table 1: Used models showing near-view and far-view.
Scene Near-View (ms) Far-View (ms)
Ray type Prim AO Diff Prim AO Diff
GLSL 18.22 (1.00x) 186 (1.00x) 493 (1.00x) | 263 (1.00x) 277 (1.00x) 586 (1.00x)
City-10 CHC4RT | 11.3 (1.61x) 153 (1.22x) 384 (1.28x) | 234 (1.12x) 286 (0.97x) 655 (0.89%)
CUDA 12.5 (1.46x) 311 (0.60x) 615 (0.80x) | 149 (1.77x) 278 (1.00x) 422 (1.39%)
GLSL 69.9 (1.00x) 772 (1.00x) 10064 (1.00x) | 82.5 (1.00x) 588 (1.00x) 2722 (1.00x)
Powerplant CHCHRT | 12.8 (5.46x%) 173 (4.46x) 1700 (5.92x)| 15.0 (5.50x) 154 (3.82x%) 843 (3.23x)
CUDA 11.8 (5.92x) 310 (2.49x) 1152 (8.74x) | 10.6 (7.78x) 246 (2.39%) 501 (5.43x)
GLSL 78.1 (1.00x) 516 (1.00x) 5464 (1.00x) | 108 (1.00x) 781 (1.00x) 3752 (1.00x)
777-Section | CHC+RT | 24.2 (3.23x) 236 (2.19%x) 2729 (2.00x)|29.8 (3.62x) 270 (2.89x) 2382 (1.58x)
CUDA 12.5 (6.25x) 277 (1.86x) 1264 (4.32x)| 164 (6.59x) 316 (2.47x) 809 (4.64x)
City-200 CHC+RT | 259 () 325.7 (- 2720 (-) 87.8 (-) 766.7 (-) 2492 (-)
Powerplantx 16 | CHC+RT | 18.7 (-) 232 () 1855 (-) 270 (-) 1559 () 25975 (-)
771 CHC+RT 134 (-) 5175 (-) 30134 (-) 333 () 1961 (-) 16441 (-)

Table 2: Comparison of our method (CHC+RT) with shader-based ray tracing (GLSL) and CUDA-based ray tracing [ALK12] (CUDA) using a
resolution of 1080p. We trace either primary rays or 20 samples per pixel of secondary rays. The numbers in bold identify the best method in
terms of the overall frame time. The numbers in parenthesis show the speedup with respect to GLSL.

maximum of 3.7 GB for the data (BVH, geometry, materials)
of our out-of-core scenes.

Table 1 shows the models used in our experiments. We use
3 scenes for in-core ray tracing and 3 out-of-core scenes. City-
10 and City-200 are a typical 2.5D city models, generated
with the City Engine [MWH*06] in two levels of detail. They
offer a high degree of occlusion for near views and a high
degree of regularity. The Powerplant model is considerably
less regular, and the created BVH is deep. For out-of-core ray
tracing, we use 16 copies of the Powerplant. The complex 777
model is a standard scene for testing out-of-core methods.
We also extracted a section of the 777 model for in-core
use. Table 2 shows numerical results for our benchmarks
using the described technique. In each scene we provide 2
walkthroughs roughly corresponding to a sequence of near-

(© 2015 The Author(s)
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view points (e.g., on street level) and far-view points (e.g.,
bird’s-eye view). We test the proposed method for primary
rays, 20 short ambient-occlusion rays (0.5 units long) which
sample the hemisphere, and 20 diffuse reflection rays where
the maximum ray length is set to cover the full scene extent.
These ray types cover many cases typically encountered in
ray-tracing applications. Our method uses all optimizations
described in Section 4.5 in order to fully exploit temporal and
spatial coherence. The BVH in our tests is constructed on
the CPU using SAH and optimized using the insertion-based
BVH optimization [BHH13]. We compare our method against
standalone GLSL shading-based traversal without occlusion
culling (simply traversing the BVH from the root node) and
the state-of-the-art CUDA ray tracer of Aila et al. [ALK12].
Note that we disabled ray sorting in CUDA tracing since
the overhead significantly outperformed the gain in traversal
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Figure 7: Comparison of CHC+RT with GLSL and CUDA in Power-
plant (near-view) for ambient-occlusion rays.

time, while for our method the rays are already generated in
a more coherent fashion.

CHC+RT usually works best for occluded walkthroughs
(near views in City scenes and Powerplant). For the City
near view, it is faster than both GLSL and CUDA tracing for
all ray types. In the Powerplant model, CHC+RT is signifi-
cantly faster than GLSL and mostly comparable with CUDA.
This can also be observed in the frame-by-frame comparison
shown in the plot of Figure 7. The sources of the speedup
with respect to GLSL are that occlusion can be efficiently ex-
ploited in Powerplant, and that the deep BVH in Powerplant
can be better handled by our method. In less occluded views,
the overhead due to the occlusion queries can sometimes out-
weigh the benefit for CHC+RT (e.g., City far view). The 777
model is a challenging case for any rendering algorithm, and
the 777 Section exhibits similar properties. Since parts of the
hull have been removed, many complex details are visible
most of the time. This is a good case for the CUDA ray tracer,
which is indeed the best method for primary and diffuse rays.
On the other hand, CHC+RT shows better overall frame times
for ambient-occlusion rays due to the smaller setup time. Also
note that CHC+RT is able to reduce the performance gap to
CUDA in this scene by a large margin.

The CUDA ray tracer is generally faster in terms of pure
traversal times than both GLSL and CHC+RT. But since a
higher constant cost is involved in the setup of each frame
for CUDA, GLSL is competitive for scene configurations
where the ray traversal time is short (e.g., for AO rays and
highly occluded scenes). We made the observation that GLSL
is much more sensitive to the stack size than CUDA, and
this becomes a bottleneck for deep hierarchies. On the other
hand, CHC+RT does not suffer from this problem. Indeed,
the scheduled subtrees have a bounded traversal height and
hence the stack size can be bounded.

The method scales well to large, possibly out-of-core
scenes if sufficient occlusion is available. The performance
of the near view in City-200 is comparable to the near view
in City-10 in spite of the over 12x larger scene and the out-
of-core overhead, and similar to the performance in the 777
Section. The same is true for the near views in Powerplant

City-10 Powerplant
Far Primary

777-Part
Far Diffuse Near AO
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Figure 8: Traversal-time comparison of CHC+RT with GLSL split
into the different phases of the algorithm.

Scene Near-View Far-View

Ray type |[Prim AO  Diff [Prim AO  Diff

Mrays/sec [80.1 127 152 |23.6 54.1 16.6
Queries 822  13.6K 61.2K|2.46K 429K 117K
City-200| Trans. MB |0 585 383 |0.61 0.11 1.73

BVH 0 3.00 949 [196 030 2.04
Geom 0 285 288 258 041 3.77

Mrays/sec | 111 179 224 |7.68 26.6 1.60
Queries |793  13.2K 32.3K|[3.63K 61.7K 312K
PPx16 |Trans. MB|0.11 0.03 0.55 [170 43.6 2310
BVH 0.04 0.01 0.13 |858 34.7 663

Geom 0.07 0.02 042 [83.8 8.85 1647
Mrays/sec 154 8.01 1.38 |6.23 21.1 252

Queries |1.76K 123K 501K |6.31 85K 278K
777 |Trans. MB|11.7 419 1442 (355 96.7 1073
BVH 264 139 595 |[70.1 250 253

Geom 9.14 281 847 (285 71.7 820

Table 3: Per-frame statistics for the out-of-core models.

and Powerplantx 16. As can be observed for the far view of
Powerplant x 16 and for 777, diffuse rays in open view-points
in the large out-of-core scenes are quite challenging for our
method, but can be improved using the aggressive version of
our algorithm discussed below.

Figure 8 visualizes the timings of the different phases of
the algorithm as listed in Algorithm 1. Phase 1 corresponds
to the intersection of previously visible nodes, while Phase 2
and 3 correspond to the overhead caused by occlusion culling.
Phase 2 evaluates the current visibility status using queries for
previously visible and invisible nodes. Phase 3 traverses the
hierarchy in response to a change in visibility. Interestingly,
the time spent in Phase 3 relative to the other phases increases
for the out-of-core scenes. The reason is that the overhead

© 2015 The Author(s)
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City-200 | Powerplantx 16 777

Pixels %Tile | Near  Far | Near Far| Near Far
0 0.000 | 2720 2492|1855 25975130134 16441
20 0.005 | 780 2019|1682 9651 | 11544 4807
100 0.025| 738 1751|1553 4727 8081 2712
200 0.050 | 715 1611|1489 3578 | 6804 2028

Table 4: Timings for the aggressive version of CHC+RT using 20
diffuse reflection rays. %Tile shows the error in % of the termination
size of the screen-space tiles.

Figure 9: Comparison of the conservative (left) with the aggressive
version of our method (middle) allowing 20 pixels of error for diffuse
rays. Right: Pixel differences are mostly in the background.

of Phase 3 corresponds to changes in visibility. Even if the
currently visible scene fits completely in-core and there are no
node fetches during Phase 1, nodes that become newly visible
will be uploaded to the GPU in this phase. Table 3 shows
some interesting statistics for the out-of-core models. For all
models, the primary ray rendering can be done predominantly
in-core. Ambient occlusion and diffuse interreflections in
particular require significantly larger transfer rates between
CPU and GPU memory.

The proposed algorithm is conservative because the
occlusion-query result (the number of visible pixels) is used
for a binary decision. As an alternative, this number can be
used for a simple LOD mechanism that culls all nodes whose
contribution to a screen-space tile is less than a visible pixel
threshold. As can be seen in Table 4, the aggressive algorithm
is especially useful for reducing the computational complex-
ity of diffuse reflections, where many nodes contribute to only
a few pixels. As shown in Figure 9, allowing for example an
error of 20 pixels per query can reduce the render time by
a factor of 3 with only a minor decrease in accuracy, with a
mean absolute pixel error of 9.04.

Table 5 shows the influence of spatial coherence during
ray generation on the performance of our method. This is
achieved by increasing the value for the maximum angle

Figure 10: Effect of the random rotation on diffuse color bleeding
using 20 samples for 18° (left), 36° (middle), and full randomization
(right) (zoom in to see the differences).

(© 2015 The Author(s)
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Randomization None 18° 36° Full
AO City-10 Near (ms) 136 145 156 193
Powerplant Near (ms)| 153 167 175 190
Diffuse City-10 Near (ms) 228 323 384 805
Powerplant Near (ms) | 664 1334 1700 4125

Table 5: Effect of the per-pixel random rotation of the diffuse sam-
pling kernel on the coherence and frame time of 20 diffuse reflection
rays in two selected models.

for the random kernel rotation per-pixel. Diffuse reflections
slow down by a factor of over 4-5x when going from no
randomization to a fully randomized rotation, whereas the
frame times for AO rays are affected much less. Note that
the frame times using full randomization are still comparable
to GLSL. The temporal coherence can be maintained by
storing the visibility status for each ray direction. In our
results we use a per-pixel rotation of 36° for 20 samples,
which provides good quality and maintains a sufficient degree
of spatial coherence (as shown in Figure 10). It also has the
benefit to eliminate some temporal noise in moving frames.

8. Conclusion and Future Work

We presented a novel use of hierarchical occlusion culling for
accelerating OpenGL-based ray tracing. Our method exploits
the rasterization pipeline and hardware occlusion queries in
order to create coherent batches of work for the GPU ray-
tracing kernel. By generalizing occlusion culling to arbitrary
rays through a combined hierarchy in both ray space and
object space, we are able to share the intermediate traversal
results among multiple rays, leading to a simple and efficient
implicit parallelization using rasterization hardware. Through
novel means for scheduling GLSL ray tracing kernels using
the coarse-grained hierarchy over screen- and object-space,
we are able to support rendering of out-of-core ray tracing
using GPU memory as a cache. Our method narrows the gap
between OpenGL-based ray tracing and CUDA ray tracing
by a significant amount and is able to outperform CUDA
ray tracing in some cases. In the future, we want to show
the flexibility of our method on legacy hardware and other
systems that support OpenGL (e.g., ATI GPUs).
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